高考数学复习详细资料(精品)导数及其应用.doc_第1页
高考数学复习详细资料(精品)导数及其应用.doc_第2页
高考数学复习详细资料(精品)导数及其应用.doc_第3页
高考数学复习详细资料(精品)导数及其应用.doc_第4页
高考数学复习详细资料(精品)导数及其应用.doc_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

花山居室导数及其应用【最新考纲透析】1.导数概念及其几何意义(1)了解导数概念的实际背景。(2)理解导数的几何意义。2导数的运算(1)能根据导数定义求函数的导数。(2)能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。(3)能求简单的复合函数(仅限于形如的复合函数)的导数。3导数在研究函数中的应用(1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)。(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间了函数的最大值、最小值(其中多项式函数一般不超过三次)。4生活中的优化问题会利用导数解决某些实际问题5定积分与微积分基本定理(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念。(2)了解微积分基本定理的含义。6、求导数的方法(1) 八个基本求导公式 ; ;(nQ) , , , (2) 导数的四则运算 , (3) 复合函数的导数设在点x处可导,在点处可导,则复合函数在点x处可导, 且 ,即. ; 【核心要点突破】要点考向1:利用导数研究曲线的切线考情聚焦:1利用导数研究曲线的切线是导数的重要应用,为近几年各省市高考命题的热点。2常与函数的图象、性质及解析几何知识交汇命题,多以选择、填空题或以解答题中关键一步的形式出现,属容易题。考向链接:1导数的几何意义函数在处的导数的几何意义是:曲线在点处的切线的斜率(瞬时速度就是位移函数对时间的导数)。2求曲线切线方程的步骤:(1)求出函数在点的导数,即曲线在点处切线的斜率;(2)在已知切点坐标和切线斜率的条件下,求得切线方程为。注:当曲线在点处的切线平行于轴(此时导数不存在)时,由切线定义可知,切线方程为;当切点坐标未知时,应首先设出切点坐标,再求解。例1:(2011山东文)4.曲线在点P(1,12)处的切线与y轴交点的纵坐标是 (A)-9 (B)-3 (C)9 (D)15(2010 海南高考理科T3)曲线在点处的切线方程为( )(A) (B) (C) (D)【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解.【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程.【规范解答】选A.因为 ,所以,在点处的切线斜率,所以,切线方程为,即,故选A.(2011重庆文)3曲线在点(1,2)处的切线方程为AA BC D(2011湖南文)7曲线在点处的切线的斜率为( )A B C D答案:B解析:,所以。要点考向2:利用导数研究导数的单调性考情聚焦:1导数是研究函数单调性有力的工具,近几年各省市高考中的单调性问题,几乎均用它解决。2常与函数的其他性质、方程、不等式等交汇命题,且函数一般为含参数的高次、分式或指、对数式结构,多以解答题形式考查,属中高档题目。考向链接:利用导数研究函数单调性的一般步骤。(1)确定函数的定义域;(2)求导数;(3)若求单调区间(或证明单调性),只需在函数的定义域内解(或证明)不等式0或0。若已知的单调性,则转化为不等式0或0在单调区间上恒成立问题求解。例2:(山东文)10函数的图象大致是C【解析】因为,所以令,得,此时原函数是增函数;令,得,此时原函数是减函数,结合余弦函数图象,可得选C正确.(2011安徽文)(18)(本小题满分13分)设,其中为正实数.()当时,求的极值点;()若为上的单调函数,求的取值范围.【解析】(18)(本小题满分13分)本题考查导数的运算,极值点的判断,导数符号与函数单调变化之间的关系,求解二次不等式,考查运算能力,综合运用知识分析和解决问题的能力.解:对求导得 (I)当,若综合,可知+00+极大值极小值所以,是极小值点,是极大值点.(II)若为R上的单调函数,则在R上不变号,结合与条件a0,知在R上恒成立,因此由此并结合,知(2011广东文)19(本小题满分14分)设,讨论函数的单调性解:函数的定义域为令 当时,令,解得则当或时,当时,则在,上单调递增,在上单调递减 当时,则在上单调递增 当时,令,解得, 则当时,当时,则在上单调递增,在上单调递减【方法技巧】1、分类讨论的原因(1)某些概念、性质、法则、公式分类定义或分类给出;(2)数的运算:如除法运算中除式不为零,在实数集内偶次方根的被开方数为非负数,对数中真数与底数的要求,不等式两边同乘以一个正数还是负数等;(3)含参数的函数、方程、不等式等问题,由参数值的不同而导致结果发生改变;(4)在研究几何问题时,由于图形的变化(图形位置不确定或形状不确定),引起问题的结果有多种可能.2、分类讨论的原则(1)要有明确的分类标准;(2)对讨论对象分类时要不重复、不遗漏;(3)当讨论的对象不止一种时,应分层次进行.3、分类讨论的一般步骤(1)明确讨论对象,确定对象的范围;(2)确定统一的分类标准,进行合理分类,做到不重不漏;(3)逐段逐类讨论,获得阶段性结果;(4)归纳总结,得出结论.要点考向3:利用导数研究函数的极值与最值考情聚焦:1导数是研究函数极值与最值问题的重要工具,几乎是近几年各省市高考中极值与最值问题求解的必用方法。2常与函数的其他性质、方程、不等式等交汇命题,且函数一般为含参数的高次、分式、或指、对数式结构,多以解答题形式出现,属中高档题。考向链接:1利用导数研究函数的极值的一般步骤:(1)确定定义域。(2)求导数。(3)或求极值,则先求方程=0的根,再检验在方程根左右值的符号,求出极值。(当根中有参数时要注意分类讨论)若已知极值大小或存在情况,则转化为已知方程=0的根的大小或存在情况,从而求解。2求函数的极值与端点处的函数值比较,其中最大的一个是最大值,最小的一个是最小值。例3:(2011辽宁文)(16)已知函数有零点,则的取值范围是_(2011北京文)(18)(本小题共13分) 已知函数。()求的单调区间;()求在区间上的最小值。【解析】:()令,得 与的情况如下:x()(0+所以,的单调递减区间是();单调递增区间是()当,即时,函数在0,1上单调递增,所以(x)在区间0,1上的最小值为当时,由()知上单调递减,在上单调递增,所以在区间0,1上的最小值为;当时,函数在0,1上单调递减,所以在区间0,1上的最小值为 (2011全国大纲文)21(本小题满分l2分)(注意:在试题卷上作答无效)已知函数 (I)证明:曲线处的切线过点(2,2); (II)若处取得极小值,求a的取值范围。【解析】21解:(I)2分由得曲线处的切线方程为由此知曲线处的切线过点(2,2)6分 (II)由 (i)当没有极小值; (ii)当得故由题设知当时,不等式无解。当时,解不等式综合(i)(ii)得a的取值范围是12分要点考向4:利用导数研究函数的图象考情聚焦:1该考向由于能很好地综合考查函数的单调性、极值(最值)、零点及数形结合思想等重要考点,而成为近几年高考命题专家的新宠。2常与函数的其他性质、方程、不等式、解析几何知识交汇命题,且函数一般为含参数的高次、分式、指、对数式结构,多以解答题中压轴部分出现。属于较难题。(2011湖北文)20(本小题满分13分)设函数,其中,a、b为常数,已知曲线与在点(2,0)处有相同的切线l。(I) 求a、b的值,并写出切线l的方程;(II)若方程有三个互不相同的实根0、,其中,且对任意的,恒成立,求实数m的取值范围。【解析】20本题主要考查函数、导数、不等式等基础知识,同时考查综合运用数学知识进行推理论证的能力,以及函数与方程和特殊与一般的思想,(满分13分)解:()由于曲线在点(2,0)处有相同的切线,故有由此得所以,切线的方程为 ()由()得,所以依题意,方程有三个互不相同的实数,故是方程的两相异的实根。所以又对任意的成立,特别地,取时,成立,得由韦达定理,可得对任意的则所以函数的最大值为0。于是当时,对任意的恒成立,综上,的取值范围是考情聚焦:1该考向由于能很好地综合考查函数的单调性、极值(最值)、零点及数形结合思想等重要考点,而成为近几年高考命题专家的新宠。2常与函数的其他性质、方程、不等式、解析几何知识交汇命题,且函数一般为含参数的高次、分式、指、对数式结构,多以解答题中压轴部分出现。属于较难题。【高考真题探究】(一)选择题(辽宁文)(11)函数的定义域为,对任意,则的解集为B(A)(,1) (B)(,+) (C)(,)(D)(,+)(全国新课标文)(10)在下列区间中,函数的零点所在的区间为C(A) (B) (C) (D)(福建文)10若a0,b0,且函数f(x)=在x=1处有极值,则ab的最大值等于DA2 B3C6 D9(山东文)3.若点(a,9)在函数的图象上,则tan=的值为(A)0 (B) (C) 1 (D) 【答案】D【解析】由题意知:9=,解得=2,所以,故选D.(山东文)4.曲线在点P(1,12)处的切线与y轴交点的纵坐标是 (A)-9 (B)-3 (C)9 (D)15(四川文)11在抛物线上取横坐标为,的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆相切,则抛物线顶点的坐标为(A)(B)(C)(D)答案:A解析:令抛物线上横坐标为、的点为、,则,由,故切点为,切线方程为,该直线又和圆相切,则,解得或(舍去),则抛物线为,定点坐标为,选A(天津文)5已知则AB C D【答案】B【解析】,又为单调递增函数,.(江西文)4.曲线在点A(0,1)处的切线斜率为( )A.1 B.2 C. D.答案:A 解析: (安徽文)(10)函数在区间0,1上的图像如图所示,则n可能是A(A)1 (B)2 (C)3 (D)4(10)A【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当时,则,由可知,结合图像可知函数应在递增,在递减,即在取得最大值,由,知a存在.故选A.解答题(湖南文)22(本小题13分)设函数(I)讨论的单调性;(II)若有两个极值点,记过点的直线的斜率为,问:是否存在,使得若存在,求出的值,若不存在,请说明理由解析:(I)的定义域为 令(1) 当故上单调递增(2) 当的两根都小于0,在上,故上单调递增(3) 当的两根为,当时, ;当时, ;当时, ,故分别在上单调递增,在上单调递减(II)由(I)知,因为,所以又由(I)知,于是若存在,使得则即亦即再由(I)知,函数在上单调递增,而,所以这与式矛盾故不存在,使得(江西文)20.(本小题满分13分)设. (1)如果在处取得最小值,求的解析式; (2)如果,的单调递减区间的长度是正整数,试求和 的值(注:区间的长度为).解:(1)已知,又在处取极值,则,又在处取最小值-5.则(2)要使单调递减,则又递减区间长度是正整数,所以两根设做a,b。即有:b-a为区间长度。又又b-a为正整数,且m+n0)的图像在点(ak,ak2)处的切线与x轴的交点的横坐标为ak+1,,若a1=16,则a1+a3+a5的值是_9函数的单调减区间为 。三、解答题(10、11小题各15分,12题16分)10已知函数f(x)=x3-3ax-1,a0.(1)求f(x)的单调区间;(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.11(2010安徽安庆高三二模(文)已知函数.当时,求函数的最小值;若在上是单调函数,求的取值范围.12(2010届北京市朝阳区高三一模(文)已知函数,()若函数在处取得极值,试求的值,并求在点处的切线方程;()设,若函数在上存在单调递增区间,求的取值范围参考答案1C 2D 3A 4C 5C 6C 78【命题立意】本题考查导数的几何意义、函数的切线方程以及数列的通项等内容。【思路点拨】先由导数的几何意义求得函数y=x2(x0)的图像在点(ak,ak2)处的切线的斜率,然后求得切线方程,再由,即可求得切线与x轴交点的横坐标。【规范解答】由y=x2(x0)得,所以函数y=x2(x0)在点(ak,ak2)处的切线方程为:当时,解得,所以.来源:Zxxk.Com【答案】219【解析】 考查利用导数判断函数的单调性。,由得单调减区间为。亦可填写闭区间或半开半闭区间。【答案】10【解析】(1)f(x)=3x2-3a=3(x2-a),当a0.当a0时,f(x)的单调增区间为(-,+).(2)f(x)在x=-1处取得极值,f(-1)=3(-1)2-3a=0,a=1.f(x)=x3-3x-1.f(x)=3x2-3,由f(x)=0解得x1=-1,x2=1,由(1)中f(x)的单调性可知,f(x)在x=-1处取得极大值f(-1)=1,在x=1处取得极小值f(1)=-3.直线y=m与函数y=f(x)的图象有三个不同的交点,又f(-3)=-191,结合f(x)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论