




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
两角差的余弦公式两角差的余弦公式一、课标要求:本章学习的主要内容是两角和与差的正弦、余弦、和正切公式,以及运用这些公式进行简单的恒等变换.三角恒等变换位于三角函数与数学变换的结合点上.通过本章学习,要使学生在学习三角恒等变换的基本思想和方法的过程中,发展推理能力和运算能力,使学生体会三角恒等变换的工具性作用,学会它们在数学中的一些应用.1. 了解用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用;2. 理解以两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系;3. 运用上述公式进行简单的恒等变换,以引导学生推导半角公式,积化和差、和差化积公式(不要求记忆)作为基本训练,使学生进一步提高运用转化的观点去处理问题的自觉性,体会一般与特殊的思想,换元的思想,方程的思想等数学思想在三角恒等变换中的应用.二、编写意图与特色1. 本章的内容分为两节:“两角和与差的正弦、余弦和正切公式”,“简单的三角恒等变换”,在学习本章之前我们学习了向量的相关知识,因此作者的意图是选择两角差的余弦公式作为基础,运用向量的知识来予以证明,降低了难度,使学生容易接受;2. 本章是以两角差的余弦公式作为基础来推导其它的公式;3. 本章在内容的安排上有明暗两条线,明线是建立公式,学会变换,暗线是发展推理和运算的能力,因此在本章全部内容的安排上,特别注意恰时恰点的提出问题,引导学生用对比、联系、化归的观点去分析、处理问题,强化运用数学思想方法指导设计变换思路的意识;4. 本章在内容的安排上贯彻“删减繁琐的计算、人为技巧化的难题和过分强调细枝末叶的内容”的理念,严格控制了三角恒等变换及其应用的繁、难程度,尤其注意不以半角公式、积化和差、和差化积公式作为变换的依据,而只把这些公式的推导作为变换的基本练习.三、教学内容及课时安排建议本章教学时间约8课时,具体分配如下:3.1两角和与差的正弦、余弦、和正切公式 约3课时3.2简单的恒等变换 约3课时复习 约2课时3.1 两角和与差的正弦、余弦和正切公式一、课标要求:本节的中心内容是建立相关的十一个公式,通过探索证明和初步应用,体会和认识公式的特征及作用.二、编写意图与特色本节内容可分为四个部分,即引入,两角差的余弦公式的探索、证明及初步应用,和差公式的探索、证明和初步应用,倍角公式的探索、证明及初步应用.三、教学重点与难点1. 重点:引导学生通过独立探索和讨论交流,导出两角和差的三角函数的十一个公式,并了解它们的内在联系,为运用这些公式进行简单的恒等变换打好基础;2. 难点:两角差的余弦公式的探索与证明.3.1.1 两角差的余弦公式一、教学目标掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.二、教学重、难点1. 教学重点:通过探索得到两角差的余弦公式;2. 教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等.三、学法与教学用具1. 学法:启发式教学2. 教学用具:多媒体四、教学设想:(一)导入:我们在初中时就知道,由此我们能否得到大家可以猜想,是不是等于呢?根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式(二)探讨过程:在第一章三角函数的学习当中我们知道,在设角的终边与单位圆的交点为,等于角与单位圆交点的横坐标,也可以用角的余弦线来表示,大家思考:怎样构造角和角?(注意:要与它们的正弦线、余弦线联系起来.)展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索与、之间的关系,由此得到,认识两角差余弦公式的结构.思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?提示:1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?2、怎样利用向量的数量积的概念的计算公式得到探索结果?展示多媒体课件比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处.思考:,再利用两角差的余弦公式得出(三)例题讲解例1、利用和、差角余弦公式求、的值.解:分析:把、构造成两个特殊角的和、差. 点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:,要学会灵活运用.例2、已知,是第三象限角,求的值.解:因为,由此得又因为是第三象限角,所以所以点评:注意角、的象限,也就是符号问题.三、教学设想:(一)导入:问题1:我们在初中时就知道,由此我们能否得到大家可以猜想,是不是等于呢?根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式(二)探讨过程:在第一章三角函数的学习当中我们知道,在设角的终边与单位圆的交点为,等于角与单位圆交点的横坐标,也可以用角的余弦线来表示。思考1:怎样构造角和角?(注:要与它们的正弦线、余弦线联系)思考2:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?(1)结合图形,明确应该选择哪几个向量,它们是怎样表示的?(2)怎样利用向量的数量积的概念的计算公式得到探索结果?两角差的余弦公式: (三)例题讲解:例1、利用和、差角余弦公式求、的值.解: 点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:,要学会灵活运用. 例2、已知,是第三象限角,求的值.解:因为,由此得又因为是第三象限角,所以所以点评:注意角、的象限,也就是符号问题. 思考:本题中没有,呢?(四)练习:1.不查表计算下列各式的值:解: (两角差的余弦公式,两角和与差的正弦、余弦、正切公式)A组一、选择题:共6小题1、(易)则( ) A. B. C. D.2、(易)设,若,则( )A. B. C. D.3、(易)等于( )A. B. C. D.4、(中)的值等于( )A. B. C. D.5、(中)的值是( )A.1 B.2 C.4 D.6、(中)的值是( )A. B. C. D.二、填空题:共3小题7、(易)已知,是第四象限角,则=_.8、(中)若,则_.9、(中)_.三、解答题:共2小题10、(中)化简:.11、(中)已知,0,cos(+)=,sin(+)=,求sin()的值.B组一、选择题:共6小题1、(易)=( )A. B. C. D. 2、(中)( )A. B. C. D.3、(中)的值是 ( )A. B. C.1 D.4、(中)已知则的值为( )A. B. C. D.5、(难)如果,则 ( )A. B. C. D.6、(难)已知A.B均为钝角,则A+B的值为( )A. B. C. D.二、填空题:共3小题7、(中) =_8、(中)函数的图象中相邻两对称轴的距离是 .9、(中)若则的取值范围. .三、解答题:共2小题10、(中)化简:2sin50+sin10(1+tan10).11、(难)已知是一元二次方程的两个不等实根,求函数的值域.C组解答题:共2小题1、(难)已知非零常数a、b满足=tan,求.2、(较难)已知(1)求的值;(2)若,求的值.参考答案A组1.D =2.A ,原式=3.B 原式 =4.C ,更一般的结论 ,5.C 原式=6.B 原式=7. 由,是第四象限角,得,于是有;8. 由,得9. , ,即原式=10.解:= = =11.解:, +.又cos(+)=, sin(+)=.又0, +.又sin(+)=, cos(+)=,sin(+)=sin+(+)=sin(+)+(+)=sin(+)cos(+)+cos(+)sin(+)=()=. B组1.D 原式=2.B 原式=3.A = =4.B =5.C 可得,得,.6.A =又7. 把原式分子、分母同除以cos15,有=tan(1545)=tan(30)=.8. ,相邻两对称轴的距离是周期的一半9. 令,则10.解:原式=2sin50+sin10(1+tan10)=2sin50+sin10(1+)=2sin50+sin10()=(2sin50+2sin10)cos10=2(sin50cos10+sin10cos50)=2sin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 5G园区网络基础设施的智能化与自动化建设方案
- 基于任务驱动的小学英语语篇教学核心素养培养模式
- 法医解剖考试题及答案解析
- 儿科科基础试题及答案
- 半导体基础试题及答案
- 教育与产业共建共享的融合发展模式
- 2025车辆抵押借款合同模板
- 120万千瓦光伏项目技术方案
- 合同到期后延迟服务期的补充协议10篇
- 终止婚姻关系共同财产分割协议范本
- 精神运动康复
- 2025年陕西省中考数学试题卷(含答案详解)
- 2025年中小学生国防知识竞赛题库及答案
- 机械制图选择题试题库及答案
- 湖南省科技创新惠企助企政策汇编 2025
- DB45∕T 2746-2023 国家储备林培育技术规程
- 医保基金监管培训课件
- 药厂变更管理培训
- 技术部工作汇报与未来规划
- 体育安全与急救知识培训
- 小区装修工具管理制度
评论
0/150
提交评论