




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学(上册)教案 第二章 不等式(第15-16课时) 保康县职业高级中学:洪培福课 题:第二章 不等式小结与复习一、知识目标:理解不等式的性质及其证明掌握一元一次不等式组、一元二次不等式、简单的分式不等式和含绝对值不等式的解法二、能力目标:1.掌握两个正数的算术平均数不小于它们的几何平均数的定理(不扩展到三个正数的算术平均数不小于它们的几何平均数定理),并会简单的证明2.掌握分析法、综合法、比较法等几种常用方法证明简单的不等式3.在复习一元一次不等式、一元一次不等式组、一元二次不等式、简单的分式不等式和含绝对值不等式等的解法的基础上,掌握其他简单不等式的解法三、情感目标:通过不等式的一些应用,理解在现实世界中的量之间,不等是普遍的、绝对的,相等则是局部的、相对的,从而形成辩证唯物主义观点四、小结与复习过程:1.比较两实数大小的方法求差比较法:比较两个实数与的大小,归结为判断它们的差的符号;比较两个代数式的大小,实际上是比较它们的值的大小,而这又归结为判断它们的差的符号.2.三个重要的结论(实数大小的性质):;例1:已知,比较与的大小.分析:此题属于两个代数式比较大小,但是其中的有一定的限制,应该在对差值正负判断时引起注意,对于限制条件的应用经常被学生所忽略.解:,由得,从而3.同向不等式,异向不等式概念:同向不等式:两个不等号方向相同的不等式;异向不等式:两个不等号方向相反的不等式.例2:是异向不等式,是同向不等式.4.不等式的性质:定理1:若,则;若,则即说明:把不等式的左边和右边交换,所得不等式与原不等式异向,称为不等式的对称性.在证明时,既要证明充分性,也要证明必要性.定理2:若,且,则说明:此定理证明的主要依据是实数运算的符号法则及两正数之和仍是正数;定理2称不等式的传递性.定理3:若,则 说明:(1)不等式的两边都加上同一个实数,所得不等式与原不等式同向;(2)定理3的证明相当于比较与的大小,采用的是求差比较法;(3)定理3的逆命题也成立(可让学生自证); (4)不等式中任何一项改变符号后,可以把它从一边移到另一边.理由是:根据定理3可得出:若,则即定理3推论:若说明:(1)推论的证明连续两次运用定理3然后由定理2证出;(2)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向.定理4如果且,那么;如果且,那么推论1:如果且,那么说明:(1)不等式两端乘以同一个正数,不等号方向不变;乘以同一个负数,不等号方向改变;(2)两边都是正数的同向不等式的两边分别相乘,所得不等式与原不等式同向;(3)推论可以推广到任意有限个两边都是正数的同向不等式两边分别相乘.这就是说,两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向.推论2:如果, 那么 定理5:如果,那么 例3:若,比较与大小解(法一):(1)若异号,则, (2)若同号,则, , (法二):,又,即, (1)若异号,则, ; (2)若同号,则, 5.基本不等式:定理:如果,那么(当且仅当时取“”)说明:(1)指出定理适用范围:;(2)强调取“”的条件定理:如果是正数,那么(当且仅当时取“=”)说明:(1)这个定理适用的范围:; (2)我们称的算术平均数,称的几何平均数.即:两个正数的算术平均数不小于它们的几何平均数.例4:已知都是正数,求证:如果积是定值,那么当时,和有最小值;如果和是定值,那么当时,积有最大值证明:, ,当 (定值)时, ,上式当时取“”, 当时有;当 (定值)时, ,上式当时取“” 当时有说明:最值的含义(“”取最小值,“”取最大值); 用极值定理求最值的必须具备的三个条件:一“正”、二“定”、三“相等”.例5:(1)若,则为何值时有最小值,最小值为多少?(2)若,则为何值时有最大值,最大值为多少?解:(1),当且仅当即时.(2),-x0,-,当且仅当即时.x0时,.例6:某工厂要建造一个长方体无盖贮水池,其容积为,深为,如果池底每的造价为元,池壁每的造价为元,问怎样设计水池能使总造价最低,最低总造价是多少?解:设水池底面一边的长度为,水池的总造价为元,根据题意,得:当因此,当水池的底面是边长为的正方形时,水池的总造价最低,最低总造价是元.6.不等式证明(1)比较法:比较法证明不等式的一般步骤:作差变形判断结论.例7:求证:证:,例8:已知都是正数,并且,求证:证:都是正数,,又,即:(2)综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数的定理)和不等式的性质,推导出所要证明的不等式,这个证明方法叫综合法.说明:利用某些已经证明过的不等式和不等式的性质时要注意它们各自成立的条件.例9:已知为两两不相等的实数,求证:证明:为两两不相等的实数,以上三式相加:,所以, 例10:设,(1)求证:;(2)求证:证:(1), (2)由(1)知,同理:, ,三式相加得:(3)分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,如果能够肯定这些充分条件都已具备,那么就可以断定原不等式成立,这种方法通常叫做分析法.说明:(1)“分析法”是从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,即“执果索因”; (2)综合过程有时正好是分析过程的逆推,所以常用分析法探索证明的途径,然后用综合法的形式写出证明过程.例11:设,证明不等式:证一:(分析法)证明原不等式不等式即证:,即:,即:, 只需证:,又, 成立, 证二:(综合法) , 7.不等式的解法举例:(1)一次不等式组的解法:先分别解各个不等式,再求各不等式解集的交集,即得不等式组的解集.例12:解不等式组.解:不等式的解为;不等式的解为.所以,原不等式组解集为=,区间表示为.(2)绝对值不等式的解法:当时,;或.例13:若,则_;若,则_;(3)一元二次不等式的解法:主要有图像法、因式分解法(转化为不等式组)、配方法(转化为绝对值不等式)、区间分析法等.例14:解不等式方法一:(图像法) 的两根是3,5的大致图像如右图所示:的解集是.方法二:(因式分解法)将左边因式分解得,它等价于不等式组或,解不等式组得解集是,解不等式组得解集是,的解集是.方法三:(配方法)将配方得,两边开方得,解这个绝对值不等式得原不等式的解集是.方法四:(区间分析法)等价于,又3,5把数轴分为三个区间(如右图所示)在区间上,与的值都为负;在区间上,为正,为负;在区间上,与的值都为正;的解集是.(4)分式不等式的解法:主要有转化为一次不等式(组)法和区间分析法.例15:解不等式方法一:(转化为一次不等式(组)法)它等价于不等式组或,解不等式组得解集是,解不等式组得解集是,所以,原不等式的解集是.方法二:(区间分析法)在数轴上标出使分子=0和分母=0的两个根,考察使和同号的区间,就得到原不等式的解集是.说明:(1)在某一区间内,一个式子是大于0(还是小于0)取决于这个式子的各因式在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年综合医院行业研究报告及未来行业发展趋势预测
- 血透室溶血的应急预案演练记录范文
- 2025年安全员A证证模拟考试题库及答案
- 2025湖南怀化市溆浦县社会保险服务中心公益性岗位招聘1人考试参考试题及答案解析
- 护士警示教育记录范文
- 2025年婴幼儿奶粉品牌战略联盟及销售合同
- 2025典当行股权转让与业务创新服务协议
- 2025年度水利工程生态补偿与保护合同规范
- 2025版单位劳动政策研究与应用合同
- 2025年度知识产权质押融资保证金担保合同范本
- 泡沫灭火系统维护保养方案
- 《低能耗建筑多排孔自保温砌块墙体体系应用技术规程》
- 《光伏产业链介绍》课件
- DB37T 1914-2024 液氨存储与装卸作业安全技术规范
- 有限空间监理实施细则
- 期末练习卷(模拟试题)-2024-2025学年 一年级上册数学人教版
- 防御台风复盘工作情况报告
- 白酒旅游活动方案
- 建筑工程质量管理与验收标准
- 2024年无人驾驶环卫行业研究报告-通渠有道
- 政府会计(第八版)课件 王宗江 第1、2章 政府会计概述、流动资产
评论
0/150
提交评论