




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
求二次函数的表达式 1 会用待定系数法确定二次函数的表达式 2 会求简单的实际问题中的二次函数表达式 二次函数表达式有哪几种表达方式 一般式 y ax2 bx c 顶点式 y a x h 2 k 如何求二次函数的表达式 已知二次函数图象上三个点的坐标 可用待定系数法求其表达式 交点式 y a x x1 x x2 解析 设所求的二次函数为y ax2 bx c 由条件得 a b c 10 a b c 4 4a 2b c 7 解方程组得 因此 所求二次函数的表达式是 a 2 b 3 c 5 y 2x2 3x 5 例1 已知一个二次函数的图象过 1 10 1 4 2 7 三点 求这个函数的表达式 例题 例2 已知抛物线的顶点为 1 3 与y轴交点为 0 5 求抛物线的表达式 y o x 解析 设所求的二次函数为y a x 1 2 3 由点 0 5 在抛物线上得 a 3 5 得a 2 故所求的抛物线表达式为y 2 x 1 2 3 1 3 规律方法 1 求二次函数y ax2 bx c的表达式 关键是求出待定系数a b c的值 由已知条件 如二次函数图象上三个点的坐标 列出关于a b c的方程组 并求出a b c 就可以写出二次函数的解析式 2 当给出的坐标或点中有顶点 可设顶点式y a x h 2 k 将h k换为顶点坐标 再将另一点的坐标代入即可求出a的值 西安 中考 如图 在平面直角坐标系中 抛物线经过a 1 0 b 3 0 c 0 1 三点 求该抛物线的表达式 解析 设该抛物线的表达式为y ax2 bx c 根据题意 得 解之得 所求抛物线的表达式为 跟踪训练 1 衢州 中考 下列四个函数图象中 当x 0时 y随x的增大而增大的是 c 2 莆田 中考 某同学用描点法画y ax2 bx c a 0 的图象时 列出如下表格 经检查 发现只有一处数据计算错误 请你写出这个二次函数的表达式 y x2 4x 3 3 潼南 中考 如图 在平面直角坐标系中 四边形oabc是菱形 点c的坐标为 4 0 aoc 60 垂直于x轴的直线l从y轴出发 沿x轴正方向以每秒1个单位长度的速度向右平移 设直线l与菱形oabc的两边分别交于点m n 点m在点n的上方 若 omn的面积为s 直线l的运动时间为t秒 0 t 4 则能大致反映s与t的函数关系的图象是 解析 选c 过点a作x轴的垂线 垂足为e 则oe 2 ae 当点m在oa上时 on t mn 所以s 0 t 2 当点m在ab上时 mn的值不变为 所以s 2 t 4 故选c 你学到哪些二次函数表达式的求法 1 已知图象上三点的坐标或给定x与y的三对对应值 通常选择一般式 2 已知图象的顶点坐标 对称轴和最值 通常选择顶点式 确定二次函数的表达解析式时 应该根据条件的特点 恰当地选用一种函数表达方式 3 已知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 桡骨骨折护理
- 2025年数据分析师初级面试技巧与模拟题答案详解
- 2025年大学教授招聘笔试模拟题及答案
- 2025年医疗器械销售代表产品推广方向招聘面试预测题集
- 2025年仓库管理员理论知识考试试题与答案
- 2025年财务经理招聘模拟题及答案
- 2025年验船师考试(C级船舶检验专业实务)综合练习题及答案二
- 2025年(公需科目)人工智能与健康考试题库试题及答案
- 2025年注册验船师考试(A级船舶检验专业基础安全)复习题及答案一
- 2026届上海市同济大学一附中化学高一上期中达标测试试题含解析
- 变电站隔离开关培训课件
- 2025年秋季开学第一次全体教师大会上校长精彩讲话:做细一件小事就是做实整个教育
- 2025年山西航空产业集团有限公司招聘考试笔试试题(含答案)
- 制药原料基础知识培训课件
- 初中化学教师培训讲座
- 应聘副研究员汇报
- 2025年登高证考试试题(附答案)
- 重症患者体位管理与安全措施
- 手术室时间管理课件
- 2025版线上直播场推广服务合同模板
- 高一上学期数学学法指导课件2024.9.14
评论
0/150
提交评论