2004级高数(下)试题及答案.doc_第1页
2004级高数(下)试题及答案.doc_第2页
2004级高数(下)试题及答案.doc_第3页
2004级高数(下)试题及答案.doc_第4页
2004级高数(下)试题及答案.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

南昌大学 20042005学年第二学期期末考试试卷及答案一、 填空题(每空 3 分,共 15 分) 1.设,则.2.曲面在点处的切平面方程是.3.交换累次积分的次序:.4.设闭区域D是由分段光滑的曲线L围成,则:使得格林公式: 成立的充分条件是:.其中L是D的取正向曲线;5.级数的收敛域是.二、 单项选择题 (每小题3分,共15分)1.当,时,函数的极限是 A.等于0; B. 等于; C. 等于; D. 不存在.2.函数在点处具有偏导数,是函数在该点可微分的 A.充分必要条件; B.充分但非必要条件;C.必要但非充分条件; D. 既非充分又非必要条件.3.设,则 A.; B. ; C. ; D. .4.若级数在处收敛,则此级数在处A.绝对收敛; B.条件收敛;C.发散; D.收敛性不确定.5.微分方程的特解应设为 A. ; B. ; C. ; D. .三.(8分)设一平面通过点,而且通过直线,求该平面方程.解: 平行该平面该平面的法向量所求的平面方程为:即:四.(8分)设,其中具有二阶连续偏导数,试求和.解:令,五.(8分)计算对弧长的曲线积分其中是圆周与直线在第一象限所围区域的边界.解: 其中: : : : 而 故: 六、(8分)计算对面积的曲面积分,其中为平面在第一卦限中的部分.解: ,七.(8分)将函数,展开成的幂级数.解:, 而 , , , 八.(8分)求微分方程:的通解.解:, 原方程为: 通解为: 九.幂级数: 1.试写出的和函数;(4分)2.利用第1问的结果求幂级数的和函数.(8分)解:1、 于是 2、令: 由1知: 且满足: 通解: 由,得:;故: 十.设函数在上连续,且满足条件 其中是由曲线,绕轴旋转一周而成的曲面与平面(参数)所围成的空间区域。1、将三重积分写成累次积分的形式;(3分)2、试求函数的表达式.(7分)解:1、旋转曲面方程为: 由,得: 故在面的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论