人教版数学七年级二元一次方程消元法及实际运用.doc_第1页
人教版数学七年级二元一次方程消元法及实际运用.doc_第2页
人教版数学七年级二元一次方程消元法及实际运用.doc_第3页
人教版数学七年级二元一次方程消元法及实际运用.doc_第4页
人教版数学七年级二元一次方程消元法及实际运用.doc_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课题82消元(第二课时)教学课时第 31 课时学习目标1.用代入法、加减法解二元一次方程组.毛2.了解解二元一次方程组时的“消元思想”,“化未知为已知”的化归思想.教学重点用代入法、加减法解二元一次方程组.教学难点会用二元一次方程组解决实际问题课程分析学情分析辅助手段教学流程教师活动学生活动一、创设情境,激发情意,引入课题甲、乙、丙三位同学是好朋友,平时互相帮助。甲借给乙10元钱,乙借给丙8元钱,丙又给甲12元钱,如果允许转帐,最后甲、乙、丙三同学最终谁欠谁的钱,欠多少?二、探究新知,讲授新课(1)加减消元法解二元一次方程组的基本思想是什么?(2)用加减消元法解二元一次方程组的主要步骤有哪些?(一)提高问题,引发讨论我们知道,对于方程组, 可以用代入消元法求解。这个方程组的两个方程中,y的系数有什么关系?利用这种关系你能发现新的消元方法吗?联系上面的解法,想一想应怎样解方程组问题的解决上面的两个方程中未知数y的系数相同,可消去未知数y,得(2x+y)-(x+y)=40-22即x=18,把x=18代入得y=4。另外,由也能消去未知数y,得(x+y)-(2x+y)=22-40即-x=-18,x=18,把x=18代入得y=4.析:这两个方程中未知数y的系数互为相反数,因此由可消去未知数y,从而求出未知数x的值。解:由得19x=11.6x=把x=代入得y=-这个方程组的解为三、拓展延伸,迁移运用加减消元法的概念从上面两个方程组的解法可以发现,把两个二元一次方程的两边分别进行相加减,就可以消去一个未知数,得到一个一元一次方程。两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。例题讲解加减法解方程组分析:这两个方程中没有同一个未知数的系数相反或相同,直接加减两个方程不能消元,试一试,能否对方程变形,使得两个方程中某个未知数的系数相反或相同。四、课堂小结(1)用加减消元法解二元一次方程组的基本思路仍然是“消元”.(2)用加减法解二元一次方程组的一般步骤:第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,可以直接把两个方程的两边相减,消去这个未知数.第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程的右边的形式,再作如上加减消元的考虑.本节课,我们主要是学习了二元一次方程组的另一解法加减法.通过把方程组中的两个方程进行相加或相减,消去一个未知数,化“二元”为“一元”.板书设计作业布置教学后记教学班级应到人数实到人数课题82消元(第三课时)教学课时第 32 课时学习目标1会用代入法解二元一次方程组.2初步体会解二元一次方程组的基本思想“消元”.3通过研究解决问题的方法,培养学生合作交流意识与探究精神.教学重点用代入消元法解二元一次方程组.教学难点探索如何用代入法将“二元”转化为“一元”的消元过程课程分析学情分析辅助教学手段教学流程教师活动学生活动一、创设情境,激发情意,引入课题七年级(3)班在上体育课时,进行投篮比赛,体育老师做好记录,并统计了在规定时间内投进n个球的人数分布情况,体育委员在看统计表时,不慎将墨水沾到表格上(如下表).进球数n012345投进球的人数1272二、探究新知,讲授新课同时,已知进球3个和3个以上的人平均每人投进3.5个球;进球4个和4个以下的人平均每人投进2.5个球,你能把表格中投进3个球和投进4个球对应的人数补上吗?你能不能用二元一次方程组,帮助体育委员把表格中的两个数字补上呢?(经过学生思考、讨论、交流)三、拓展延伸,迁移运用例题讲解(见P101)分析:如果1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷,那么2台大收割机和5台小收割机1小时收割小麦_公顷,3台大收割机和2台小收割机1小时收割小麦_公顷.上面解方程组的过程可以用下面的框图表示:解:设1台大收割机和1台小收割机1小时各收割小麦x公顷和y公顷.根据两种工作方式中的相等关系,得方程组去括号,得-,得11x=4.4解这个方程,得x=0.4把x=0.4代入,得y=0.2这个方程组的解是答:1台大收割机和1台小收割机1小时各收割小麦0.4公顷和0.2公顷.四、课堂小结这节课我们经历和体验了列方程组解决实际问题的过程,体会到方程组是刻画现实世界的有效模型,从而更进一步提高了我们应用数学的意识及解方程组的技能.板书设计作业布置教学后记教学班级应到人数实到人数课题课堂练习8.2消元(一)教学课时第 33 课时一 填空题1.已知x2,y2是方程ax2y4的解,则a_.2.已知方程x2y8,用含x的式子表示y,则y =_,用含y的式子表示x,则x =_3.方程xy4有_个解,有_个正整数解,它们是_.4.方程2xy7与x2y4的公共解是_.5.若x、y互为相反数,且x3y4,,3x2y_.二用代入法解方程组:6 y =3x1 7. 4xy=5 2x4y=24 3(x1)=2y3 8. 9. 三解答题10.已知是方程组的解.求、的值.11.已知方程组的解为,求的值.12.若 与 都满足方程.(1)求和的值;(2)当时,求的值;(3)当时,求的值.13超市里某种罐头比解渴饮料贵1元,小彬和同学买了3听罐头和2听解渴饮料一共用了16元,你能求出罐头和解渴饮料的单价各是多少元吗?教学后记教学班级应到人数实到人数课题8.3 实际问题与二元一次方程组教学课时第 34 课时学习目标1.使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用2.通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性。教学重点能根据题意列二元一次方程组;根据题意找出等量关系;教学难点正确发找出问题中的两个等量关系课程分析学情分析辅助教学手段教学流程教师活动学生活动一、创设情境,激发情意,引入课题复习列方程解应用题的步骤是什么?审题、设未知数、列方程、解方程、检验并答看一看 课本105页探究1问题:1题中有哪些已知量?哪些未知量?2题中等量关系有哪些?3如何解这个应用题?本题的等量关系是(1)30只母牛和15只小牛一天需用饲料为675kg(2)(30+12只母牛和(15+5)只小牛一天需用饲料为940二、拓展延伸,迁移运用1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?2、有大小两辆货车,两辆大车与3辆小车一次可以支货15。50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?3、某工厂第一车间比第二车间人数的少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的,问这两车间原有多少人?4、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?三、课堂小结1.使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用2.通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性。板书设计作业布置教学后记教学班级应到人数实到人数课题8.3 实际问题与二元一次方程组(二)教学课时第 35 课时学习目标通过学生积极思考,互相讨论,经历探索事物之间的数量关系,形成方程模型,解方程和运用方程解决实际问题的过程进一步体会方程是刻划现实世界的有效数学模型教学重点让学生实践与探索,运用二元一次方程解决有关配套与设计的应用题教学难点寻找等量关系课程分析学情分析辅助教学手段教学流程教师活动学生活动一、创设情境,激发情意,引入课题看一看:课本106页探究2问题:1“甲、乙两种作物的单位面积产量比是1:1.5”是什么意思?2、“甲、乙两种作物的总产量比为3:4”是什么意思?3、本题中有哪些等量关系?提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少? 思考:这块地还可以怎样分?二、拓展延伸,迁移运用一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:农作物品种每公顷需劳动力每公顷需投入奖金水稻4人1万元棉花8人1万元蔬菜5人2万元已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?教材106页:探究3:如图,长青化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。公路运价为1.5元/(吨千米),铁路运价为1.2元/(吨千米),这两次运输共支出公路运费15000元,铁路运费97200元。这批产品的销售款比原料费与运输费的和多多少元?例:甲运输公司决定分别运给A市苹果10吨、B市苹果8吨,但现在仅有12吨苹果,还需从乙运输公司调运6吨,经协商,从甲运输公司运1吨苹果到A、B两市的运费分别为50元和30元,从乙运输公司运1吨苹果到A、B两市的运费分别为80元和40元,要求总运费为840元,问如何进行调运?1、 某山区有23名中、小学生因贫困失学要捐助。资助一名中学生的学习费用需要a元,一名小学生的学习费用需要b元。某校学生积极捐款,初中各年级学生捐款数额与用其捐助贫困中学生和小学生的部分情况如下表:捐款数额(元)捐助贫困中学生人数(名)捐助贫困小学生人数(名)初一年级400024初二年级420033初三年级7400(1) 求a、b的值。(2) 初三学生的捐款解决了其余贫困中小学生的学习费用,请将初三年级学生可捐助的贫困中、小学生人数直接填入上表中(不必写出计算过程)。2、 某公园的门票价格如下表所示:购票人数1人50人51100人100人以上票价10元/人8元/人5元/人某校八年级甲、乙两个班共100多人去该公园举行游

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论