直流稳压电源.docx_第1页
直流稳压电源.docx_第2页
直流稳压电源.docx_第3页
直流稳压电源.docx_第4页
直流稳压电源.docx_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

23上海大学本科生报告姓名:苟帅学号:13120868学院:机电工程与其自动化学院直流稳压电源能为负载提供稳定直流电源的电子装置。直流稳压电源的供电电源大都是交流电源,当交流供电电源的电压或负载电阻变化时,稳压器的直流输出电压都会保持稳定。稳压电源的分类,按输出电源的类型分有直流稳压电源和交流稳压电源。特点1输出电压值稳定值能在额定输出电压值以下任意设定和正常工作。2输出电流的稳流值能在额定输出电流值以下任意设定和正常工作。3直流稳压电源的稳压与稳流状态能够自动转换并有相应的状态指示。4对于输出的电压值和电流值要求精确的显示和识别。5对于输出电压值和电流值有精准要求的直流稳压电源,一般要用多圈电位器和电压电流微调电位器,或者直接数字输入。6要有完善的保护电路。直流稳压电源在输出端发生短路及异常工作状态时不应损坏,在异常情况消除后能立即正常工作。数字直流稳压稳流电源内部采用IGBT模块调整模式,具体高效能、高精度、高稳定性等特性,主要应用于科研单位、实验室和电子产线等需要高效电源测试时使用。1、输出显示:输出电压电流LED显示2、采用19英寸标准化尺寸,可组合放置于各种工作台面及机架;3、体积小、重量轻、节能高效4、恒压恒流:输出恒压恒流自动切换,电压电流值连续线性调节;5、保护功能:过压保护、过流保护、过温保护、欠压保护、过载保护;6、短路特性:本机工作状态下长时间短路;7、外接补偿:本机可选外接补偿,可降低因输出回路较长等造成的压降;8、过压保护值:输出过压佑护值可调,保护后切断输出并锁定,重新开机恢复;9、通信功能:可选特殊数据接口,与其他设备数据连接控制,或与PLC连接。(选配)10、外控功能:可选0-5V或4-20mA信号控制电源的输出电压和电流;(选配)11、定时功能:可选定时开关机功能;(选配)直流稳压电源的技术指标可以分为两大类:一类是特性指标,反映直流稳压电源的固有特性,如输入电压、输出电压、输出电流、输出电压调节范围;另一类是质量指标,反映直流稳压电源的优劣,包括稳定度、等效内阻(输出电阻)、纹波电压及温度系数等。直流稳压电源参数详解线性直流稳压电源设计应考虑的主要参数有:输入输出电压差,线性调节率,负载调节率,接地电流,电源效率,输出准确率,瞬态响应,频率响应,输出噪声电压等.本文将比较详细地分别介绍这些参数输出电压差(Dropout voltage)输出电压差在线性稳压器中是一个非常重要的参数,而其定义为:当输入电压(电压源)降到某个程度时,其输出电压将不再稳压在预计的输出电压,而在临界点时的输入电压与输出电压的差值即为压降电压。以图1为例,其输出电压差为3.3V-2.5V800mV。简单来说就是输出功率晶体管的漏极和源极的压差,直接关系到的就是电源功率的消耗,越大的跨压所损失的功率就越大,所以说,输出电压差是越小越好。 图1 LDO输出与输入电压关系对输出PMOS晶体管而言,其漏极是连接到输出端,因此当输入端(源极)电压很小时,晶体管守闭状态,当源极电压加大后,晶体管开启,输出端电压开始爬升,一直到稳定的设定值之间的这段输入电压差,即是输出电压差。其实对于输出晶体管来说,就是它的饱和电压差(VSD-sat),当MOS 晶体管大小确定,且闸极电压固定之后,其饱和电压差基本上就不会改变,所以提供闸极电压的前一级放大器,和输出晶体管的大小在设计上都要能达到理想的输出电压差。对于电源功率消耗的部份,将晶体管饱和电压(VSD-sat)差乘上输出端所流过的电流,即是消耗功率,P = IOUTVSDsat对于一个可携带式电子产品来说,都是由电池来提供电源,这部份的电源消耗当然是越小越好,以求电池寿命能够长久,低压降线性稳压器能够如此受欢迎的原因,就是在这方面能够节省很多的电力。线性调节率(Line regulation)这项参数在线性稳压器中也是非常重要的,指的是当输入电压产生变化时,相对于输出端电压的改变。我们预期当输入电压改变时,输出电压能一直维持稳定,但是实际上是有小幅改变,通常以百分比(%)表示。如图(2)所示,分析电路可得: 图2 LDO 电路结构由于输入电压改变时,会造成反馈电压的改变,再由误差放大器加以调节输出晶体管(PMOS),来控制输出电压,因此若增加整个电路的开回路增益,对于线性调节率的提升有很大的帮助。负载调节率(Load regulation)相对于线性调节率,线性稳压器另一个主要考虑就是负载调节率,表示当负载端有变化,也就是输出电流有改变时,输出电压的变化率。当负载有变化时,输出电压会跟着改变,再由反馈网络让误差放大器对于电压变化作反应,控制输出晶体管,输出电流也会随之改变来应整个电压的变化。如图(2)所示,由式子可以看出,负载的改变造成电压的变化,经误差放大器放大之后,输出电流也跟着做变化。明显的,最后的式子可以得知,负载调节率被线性稳压器的转导(Gm,也就是误差放大器的增益乘上输出晶体管的电流增益)所限制,所以要改善负载调节率,可以增加DC的电流增益,可以得到不错的效果。接地电流(Ground current)接地电流又称为偏压电流(Quiescent current),就是输入电流与输出电流的差值,关系到整体的电流效率。Iq = IinIout一般而言,静态电流包括了电路中的偏压电流(如:误差放大器、参考电压源)和驱动输出晶体管的电流,这些对于输出效率并无帮助,造成无谓的消耗电源,因此在设计上是越小越好。一个以双载子晶体管做为输出端的线性稳压器,天生就存在有蛮大的静态电流,也就是基极电流,且基极电流是正比于输出电流,因此它的静态电流是会随输出电流增加而变更大。在低压降线性稳压器中,是使用MOS晶体管来当作输出晶体管,MOS晶体管是用VGS来控制电流,而其闸极并无电流通过,因此其静态电流可以保持固定,且无视于负载端的变化,这也是用MOS当输出端优于双载子晶体管的好处之一。电源效率(Efficiency)低压降线性稳压器的效率,定义为输出功率和输入功率的比值:由上式可以看出,输出和输入电压差,也是影响效率的因素之一,当Iq很小,小到可以忽略的时候,明显的效率是由输出电压和输入电压的比值决定。此外,当稳压器操作在无负载的时候,也就是输出电流为0时,上式就不适用来计算整体效率,此时Iq就显得格外重要,Iq越小自然电池寿命也就得以维持更长久。输出准确率(Output accuracy) 图3 输出电压误差输出电压的准确度和低压降线性稳压器的各个部份的电压误差关系密切,像是:线性调节率(VLIR)、负载调节率(VLOR)、参考电压偏移(VREF)、误差放大器电压偏移(VA)、外部回授电阻的误差(VR)、温度系数(TC)等。输出电压误差主要是由环境温度改变所造成的参考电压偏移、误差放大器的特性改变(增益误差、偏移电流)、电阻值误差,这些误差加上线性调节率和负载调节率通常会使得精确度改变1%3%。另外,制造上的变异也同样会造成上述各部份产生误差。接下来仔细讨论各部份造成的误差,就参考电压源的部份,和输出电压的关系式为:从上述式子可以得到,参考电压的误差会直接影响到输出电压,而且是直接正比于误差百分比。再有守于误差放大器的误差部分: 图误差放大器电压偏移考虑 ga1,将上两是合并的结果:最后是电阻的误差部分: 图4 电阻值误差 关系式如上式,显然的,电阻误差影响输出电压相对于前面几项来得比较小,且R2的影响要比R1还要大。瞬态响应(Transient response)主要是当负载电流在瞬间改变时,输出电压变化的情况以及电压回稳的时间。影响到瞬时响应的包括:稳压器的频宽、输出电容(Cout)、输出电容的等效串联电阻(Resr)、最大负载电流等。图5 步阶负载接下来分成几个部分来分析当负载改变时,输出电压的变化。首先以一个步阶负载应用,观察相对的输出电压反应,当负载端忽然从稳压器抽取大量电流,此时由于稳压器频宽的关系,反应不及造成无法及时提供负载端足够的电流,输出电压就如图(5)中T1时间内的反应,产生一段不小的压降(Vdip),这段时间内由输出电容暂时提供负载所需的大量电流,由COUT流向VOUT。图(2.8)输出电压对于负载之变化T1时间的大小,主要是由稳压器的频宽与旋转率所决定时间T2的长度与传输组件对Cout充电和稳压器的闭回路相位响应有关,时间T3的Vpeak是由于当负载瞬间移除,传输组件供应过多的电流所致。时间T4,稳压器开始将电压拉至设定的输出电压。输出电容的等效串联电阻真实的电容模型如图(6),真实电容有寄生电感与电阻。输出电容的等效串联电阻(ESR)是用来使得LDO能有足够的频率稳定性,ESR数值的大小会影响到零点与极点的位置。LDO制造商通常会提供建议使用输出电容值与ESR稳定区间,如图(7) 图6 真实的电容模型图7 等效串联电阻值稳定范围频率响应( frequency response)图(8),表示LDO 的AC 小讯号等效电路,分析电路得输入与反馈的转换函数: gma 、gmp 分表示误差放大器之转导与传输组件之转导, Rpar,Cpar 表示寄生电阻与电容。 图8 交流等效电路经由上式可发现,整个回路中存在3 个极点以及一个零点,这与其稳定度的设计有密切的关系。第一个极点,也就是主极点,是由输出电容以及低压降线性稳压器的输出阻抗所造成第二个极点,是由误差放大器到输出晶体管之间寄生电容和电阻所形成:第三个极点,是由输出电容的等效串连电阻以及Cb所形成:至于零点,是由输出电容以及其等效串连电阻所形成:极点及零点的位置,与误差放大器及输出电容大小有关。故为了让整个电路达到良好的稳定度,便将零点位置控制在单增益频率(fT)附近,可有效提升电路的相位边限,进而使稳定度提高。基于稳定度之限制的缘故,使得开回路直流增益无法提高,而造成线性调节率、负载调节率与精确度有所限制。若是要有最佳的线性调节率、负载调节率与精确度,则必须提升开回路直流增益,但无限制地提高开回率直流增益,则会造成相位边限的不足。由上面所述,一个没有补偿的低压降线性稳压器,会因为两个极点的效果,如图(9),使得相位在单增益频率时变为-180,整个电路也会因此而震荡,故由等效串联电阻所形成的零点,对于一个低压降线性稳压器而言十分重要,以下对于这个等效串联电阻加以讨论:当等效串联电阻太大的情形,如图(10),会造成零点位置过小,使得原本在单增益频率之下的第三个极点也跑到前面,而拉低了相位边限,导致电路不稳定。 图9 无频率补偿之频率响应 图10 过大ESR 之频率响应再看等效串联电阻太小的情况,如图(11),导致零点位置低于单增益频率,致使相位边限并没有获得提升,原本要对电路作补偿的效果就消失了。 图11 过小ESR 之频率响应 图12 适当ESR 之频率响应总而言之,等效串联电阻的值有一个最适合的范围,如图(12),在这范围内都可以使低压降线性稳压器更加稳定。因此输出电容的选取,也显得格外重要。输出噪声电压(Output Noise Voltage)在固定的输出电流与稳定的输入电压条件下,给定一段特定的频率范围内(10Hz100KHz),量测输出噪声电压的方均根值。通常来说,误差放大器与参考电压源为主要的噪声来源,可在输出端连接旁路电容以减少输出噪声。应用与未来几乎所有的电子电路都需要稳定的直流电源,在检定检修指示仪表时,除了要有合适的标准仪器外,还必须要有合适的直流电源及调节装置。当由交流电网供电时,则需要把电网供给的交流电转换为稳定的直流电。交流电经过整流、滤波后变成直流电,虽然能够作为直流电源使用,但是,由于电网电压的波动,会使整流后输出的直流电压也随着波动。同时,使用中负载电流也是不断变动的,有的变动幅度很大,当它流过整流器的内阻时,就会在内阻上产生一个波动的电压降,这样输出电压也会随着负载电流的波动而波动。负载电流小,输出电压就高,负载电流大,输出电压就低。直流电源电压产生波动,会引起电路工作的不稳定,对于精密的测量仪器、自动控制或电子计算装置等,将会造成测量、计算的误差,甚至根本无法正常工作。因此,通常都需要电压稳定的直流稳压电源供电。晶体管直流稳压电源可以作为各种晶体管仪器、仪表、电子计算机、自动控制系统与设备的直流电源。精密稳压、稳流电源还可作为检定某些电工仪表用的稳压、稳流电源。因此,晶体管直流稳压电源是科研、生产、教学和维修等单位常用的必备仪器。一、直流稳压电源的原理(一) 方框图及工作原理晶体管串联型直流稳压电源的典型电路方框图如图1-1所示。它由整流滤波电路、串联型稳压电路、辅助电源和保护电路等部分组成。图1-1 直流稳压电源电路原理方框图整流滤波电路包括电源变压器、整流电路和滤波电路。半导体电路常用的直流电源有6V、12V、18V、24V、30V等额定电压值,而电网电压一般为交流220V,要把电网的交流电压变换成所需要的直流电压,首先要经过电源变压器降压,然后通过整流电路将交流电变成脉动的直流电,由于整流后的电压还有较大的交流成分,必须通过滤波电路加以滤除,从而得到比较平滑的直流电压。经过滤波电路后所得到的直流电压,虽然脉动小了,但是电压的数值仍是不稳定的,其主要原因有三个方面:一是交流电网的电压一般有10%左右的波动,因而会引起整流滤波输出的直流电压也有10%左右的波动;二是整流滤波电路存在内阻,当负载电流变化时,在内阻上的电压降落也会变化,使输出直流电压也随之变化;三是在整流稳压电路中,由于采用的半导体器件特性随环境温度而变化,所以也造成输出电压不稳定。稳压电路可以保持输出直流电压的稳定,使之不随电网电压、负载或温度的变化而变化。串联型稳压电路由调整环节、比较放大电路、取样电路、基准电压等部分组成。调整环节中的调整管是串接在滤波电路和负载之间,故称为串联型稳压电路。调整管相当于一个可变电阻,如果输出电压升高了,则其电阻值相应地增大,使输出电压降回来;反之,如果输出电压下降了,则其电阻值相应地减小,使输出电压有所升高。这样调整输出电压,使其维持不变,就可达到稳压的目的。取样电路用电阻分压的方法,将输出电压的变化按一定比例取样下来,为取样信号。基准电压是稳定而标准的参考电压。取样信号与基准电压同时加至比较放大电路进行比较,然后将两者之差进行放大,用放大后的电压去控制调整管的基极注入电流,从而改变调整管的直流内阻,调整输出电压稳定不变。为提高稳压器的性能,比较放大电路常采用两级差动放大器,放大倍数较大,控制能力较强,其次比较放大电路还要求零点漂移小,温度稳定性好。上述的整流滤波电路与串联型稳压电路合在一起,也称为主电源。其稳压原理是这样的:如果由于电网电压或负载变化而引起输出电压增大时,经取样电路产生的取样电压也增大,这时取样电压大于基准电压,其差值经比较放大电路放大后,经调整环节使调整管的发射结电压减小,其基极电流减小,调整管的直流内阻增大,其管压降就增大,从而使输出电压减小,维持了输出电压的稳定。同理,当输出电压减小时,通过类似过程,使调整管的直流内阻减小,其管压降减小,也将使输出电压回升,从而基本保持不变。直流稳压电源除了主电源,一般都有两组辅助电源。第一辅助电源由整流器和稳压器组成,其输出电压也相当稳定;第二辅助电源与主电源电路相似,也由整流滤波电路和串联型稳压电路组成,其输出电压很稳定。第一辅助电源的输出电压一方面作为保护电路的电源电压,另一方面与主电源的输出电压和第二辅助电源的输出电压正向串联后,作为主电源比较放大电路末级差动放大管的电源电压,为比较放大电路提供一个具有较高电压的稳压电源,使其增益较大,这样,就提高了主电源串联型稳压电路的调整灵敏度,进一步提高了其输出电压的稳定性。第二辅助电源的输出电压一方面作为主电源比较放大电路差动放大管的电源电压,另一方面通过分压电路输出稳定的电压,作为主电源比较放大电路的基准电压。在串联型稳压电路中,当过载时,特别是在输出端短路的情况下,输入直流电压几乎全部落在调整管的两端,这种过载现象即使时间很短,也会使调整管和整流二极管立即烧毁。因此,必须采用快速动作的过流自动保护电路。当过载或短路时,通过保护电路使调整管截止。这时,输出电压和电流基本都下降为零,起到保护作用。这种保护电路称为截止式保护电路。(二) 串联型稳压电路图1-2所示是具有放大环节的串联型晶体管稳压电路。输入电压Vi是由整流滤波电路供给的。电阻R1、R2组成分压器,把输出电压的变化量取出一部分加到由T1组成的放大器的输入端,所以叫作取样电路。电阻R3和稳压管Dz组成稳压管稳压电路,用以提供基准电压,使T1的发射极电位固定不变。晶体管T1组成放大器,起比较和放大信号的作用。R4是T1的集电极电阻,从T1集电极输出的信号直接加到调整管T2的基极。图1-2 串联型稳压电路如果由于电网电压降低或负载电流增大使输出电压Vo降低时,通过R1、R2的分压作用,T1的基极电位VB1下降,由于T1的发射极电位VE1被稳压管Dz稳住而基本不变,二者比较的结果,使T1发射结的正向电压减小,从而使T1的IC1减小和VC1增高。VC1的升高又使T2的IB2和IC2增大,VCE2减小,最后使输出电压Vo升高到接近原来的数值。以上稳压过程可以表示为:同理,当Vo升高时,通过稳压过程也使Vo基本保持不变。比较放大器可以是一个单管放大电路,但为了提高其增益及输出电压温度稳定性,也可以采用多级差动放大电路和集成运放。调整管通常是功率管,为增大值,使比较放大器的小电流能推动功率管,也可以是二个至三个晶体管组成的复合管,如果调整管的功率不能满足要求时,也可以是若干个调整管并联使用,增加支路以便扩大输出电流。由于用途不同,取样电路的接法也不同:对稳压源,取样电阻是与负载并联;而对稳流源,取样电阻则是与负载串联。有些电子设备需要大小相等而极性相反的双路电源电压。这样的电源电压可以通过对称的双路稳压电路来获得。(三) 辅助电源电路1第一辅助电源电路在图1-2所示的电路中,放大管T1的负载R4直接接在变化较大的输入电压Vi上,因此输入电压的变化会直接通过R4作用到调整管T2的基极上,从而使输出电压发生变化,影响其稳定性。为了克服这个缺点,可以采用一个独立的辅助电源Vz2供电,如图1-3所示。这个电源也称为第一辅助电源,是由R和Dz2组成的稳压电路,由同一变压器的另一次级绕组经整流滤波得到电压Vi1,经稳压电路得到稳定电压Vz2,该电压与Vo串联后作为T1的电源。由于Vz2与Vo都是相当稳定的,所以电源电压的波动对输出电压的影响可大大减小。由于Vz2与Vo相加作为比较放大器的电源,所以R4可以选得比原来大,以提高放大倍数,从而进一步地增强了控制能力,提高了输出电压的稳定性。图1-3 第一辅助电源电路2 第二辅助电源电路在图1-2所示的电路中,串联型稳压电路的输出电压Vo可以由下式给出:可见,改变取样电路的分压比,可以调节输出电压的大小。R1愈小则输出电压Vo也愈小。当R1=0时,输出电压最低,其值为:Vomin=Vz+VBE1,即输出电压的最低值仍高于稳压管工作电压Vz,输出电压不可能调整到零是这种电路的缺点。为了扩大输出电压的调整范围,可增加第二辅助电源,如图1-4所示,这种电路稳压管的电压是由另一组整流电路的Vi2供给,从图可以直观看出,如果R1=0时,则V = VBE10。可见,第二辅助电源提供了调节输出电压接近于零的可能性,只要改变取样电路的分压比,就可实现输出电压在大范围内连续可调的要求。图1-4 第二辅助电源电路(四)串联型稳压电路的保护电路串联型晶体管稳压电路的保护电路可分为限流式和截止式两种。1限流式保护电路限流式保护电路是当输出电流超过一定数值时,则保护电路开始工作,使调整管处于不完全截止状态,输出电流和输出电压都相应下降,达到保护电源的目的。这种保护电路比较简单,而且当输出过载或短路被排除后,稳压电路便自动地恢复工作。图1-5 限流保护电路图1-5所示虚线包围的部分是较常见的限流式保护电路。T3称为保护管。输出电压经R5和R6分压,取R6上的电压给T3基极提供反向偏压。R7为检测电阻,其阻值较小。输出电流在R7上的压降给T3基极提供正向偏压。在正常情况下,R6上的反向偏压超过R7上的正向偏压,所以T3处于截止状态,对稳压电路工作没有影响。当过载使输出电流过大时,则R7正向压降也增大,使T3进入导通状态,于是T3管两端电压减小,使调整管T2发射结正向电压也减小,从而使调整管电流减小,输出电流和电压都减小,对调整管起到了保护作用。这种保护电路维持T3导通的必要条件是输出电流经过R7产生正向偏压,因此只能把输出电流减小到一定程度,而不能使调整管截止。当输出过载原因被排除后,可以自动恢复到正常状态。优点是简单可靠,缺点是过载时调整管上仍消耗较大的功率。2截止式保护电路截止式保护电路是当负载过载或短路时,通过保护电路使调整管截止,这时输出电压和电流基本都下降为零,从而起到保护作用。截止式保护电路稍微复杂。它又可分为两种情况:一种是可自动恢复工作;另一种是当故障排除后必须依靠复位按钮或切断交流电源重新开机,稳压电源才能恢复正常工作。图1-6 截止式保护电路图1-6 所示虚线包围的部分为截止式保护电路。图中电阻R8、稳压管Dz2及分压电阻R4、R5为保护管T3提供基极电压,由输出电压Vo经电阻R6、R7分压供给T3发射极电压,检测电阻R接在R7和R5之间,输出电流Io流过它产生电压降,R5、R7和R上电压的极性如图所示,可见加在保护管T3的发射结电压为VBE3=(VR5+VR)-VR7当稳压电路正常工作时,Io在额定值内,VR=IoR较小,使VR5+ VRVR7,则VBE3为负值,T3管发射结反向偏置而可靠地截止。保护电路不起作用,对稳压电路的正常工作没有影响。 当输出电流Io超过额定值时,R上电压增加使T3导通,其集电极电压VC3下降,即调整管T2的VB2下降,致使它趋于截止,VCE2增大,输出电压Vo随之减小,结果R7上的电压VR7减小,使T3管进一步导通,又使Vo进一步下降,形成正反馈过程,以致调整管T2迅速截止,输出电压和电流均接近于零。此时靠R5上的电压VR5维持T3导通,T2截止,达到了保护的目的。线性线性稳定电源有一个共同的特点就是它的功率器件调整管工作在线性区,靠调整管之间的电压降来稳定输出。由于调整管静态损耗大,需要安装一个很大的散热器给它散热。而且由于变压器工作在工频(50Hz)上,所以重量较大。该类电源优点是稳定性高,纹波小,可靠性高,易做成多路,输出连续可调的成品。缺点是体积大、较笨重、效率相对较低。这类稳定电源又有很多种,从输出性质可分为稳压电源和稳流电源及集稳压、稳流于一身的稳压稳流(双稳)电源。从输出值来看可分定点输出电源、波段开关调整式和电位器连续可调式几种。从输出指示

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论