变量间的相关关系与线性回归方程.doc_第1页
变量间的相关关系与线性回归方程.doc_第2页
变量间的相关关系与线性回归方程.doc_第3页
变量间的相关关系与线性回归方程.doc_第4页
变量间的相关关系与线性回归方程.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

变量间的相关关系与线性回归方程一、知识点1.正相关:从散点图看,点散布在从左下角到右上角的区域内.负相关:从散点图看,点散布在从左上角到右下角的区域内.2.回归直线方程:,其中(x,y),(x,y),(x,y)为样本点,则 ,;线性回归方程中系数计算公式:3.统计案例相关系数是用于衡量两个变量之间的线性相关程度的.时表示两个变量正相关;时表示两个变量负相关;的绝对值越接近,表明两个变量间的线性相关程度越高,当时,可以认为两个变量有很强线性相关性.相关指数,用来刻画回归的效果,越接近,表明回归效果越好.两个分类变量和的列联表:总计aba+bcdc+d总计a+cb+da+b+c+d则,通常:(1)有的把握认为与有关系;(2)有的把握认为与有关系;(3)有的把握认为与有关系;(4)有的把握认为与有关系;(5)认为没有充分证据显示与有关系;二、例题例1:某市居民20052009年家庭年平均收入X年份20052006200720082009收入X支出Y(单位:万元)与年平均支出Y(单位:万元)的统计资料如下表所示:根据统计资料,居民家庭年平均收入的中位数是 ,家庭年平均收入与年平均支出有 线性相关关系.某数学老师身高176cm,他爷爷、父亲和儿子的身高分别是173cm、170cm和182cm 因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为_cm析:根据题中所提供的信息,可知父亲与儿子的对应数量可列表如下: 父亲的身高() 173 170 176儿子的身高() 170 176 182例2:下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量 (吨)与相应的生产能耗 (吨标准煤)的几组对照数据 (1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:)解: (1)如下图(2)=32.5+43+54+64.5=66.5,=4.5,=3.5=+=86, ,故线性回归方程为y=0.7x+0.35(3)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为0.7100+0.35=70.35,故耗能减少了90-70.35=19.65(吨)例3:为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下: 性别是否需要志愿 男女需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人,需要志愿帮助的老年人的比例?说明理由附:解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估算值为(2)。由于9.9676.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关。 (3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好二、练习题1某产品的广告费用x与销售额y的统计数据如下表:广告费用x(万元)4235销售额y(万元)49263954根据上表可得回归方程中的为94,据此模型预报广告费用为6万元时销售额为A636万元 B655万元 C677万元 D720万元2调查了某地若干户家庭的年收入(单位:万元)和年饮食支出(单位:万元),调查显示年收入与年饮食支出具有线性相关关系,并由调查数据得到对的回归直线方程:,由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加_万元. 3通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由算得,参照附表,得到的正确结论是0050001000013841663510828A.再犯错误的概率不超过01%的前提下,认为“爱好该项运

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论