



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.1分类加法计数原理与分步乘法计数原理【课题】:1.1.2分类加法计数原理与分步乘法计数原理【设计与执教者】:广州市南武中学 朱双海【学情分析】:在上一阶段的学习中,理解古典概型及其概率计算公式,并会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。本节中将通过实例,总结出分类加法记数原理、分步乘法原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题。计数原理是后续推导排列、组合公式和证明二项式定理的理论基础【教学目标】:(1)知识与技能掌握分类计数原理和分步计数原理,并能够运用这两个原理解决简单的应用问题;(2)过程与方法通过实例,理解两个基本原理的运用,从而提高分析问题、解决问题的能力,提高学生综合、归纳的能力.(3)情感、态度与价值观通过了解基本原理在生产,生活实际中的应用,使得学生认识数学知识与现实生活的内在联系,增强在现实生活中面对复杂的事物和现象时作出正确分析和准确判断的能力.【教学重点】两个基本原理的运用【教学难点】正确运用两个原理解决问题【教法、学法设计】 启发引导式【课前准备】 Powerpoint【教学过程设计】:教学环节教学活动设计意图一、复习师提出问题1:书架上层放4本不同的语文书,中层放5本不同的数学书,下层放6本不同的英语书,(1)如果从中任取一本书,有多少种不同的取法?(2)如果从中任取三本书,其中包括语文书、数学书、英语书各一本,有多少种不同的取法?解:(1)本题要完成取出一本书这一件事,可以分三类不同的取法:第一类:从上层取一本语文书有4种不同的取法;第二类:从中层取一本数学书有5种不同的取法;第三类:从下层取一本英语书有6种不同的取法;上述取法均能独立完成这件事,所以有4+5+6=18种(2)本题要分成三个步骤:第一步:从上层取一本语文书有4种不同的取法;第二类:从中层取一本数学书有5种不同的取法;第三类:从下层取一本英语书有6种不同的取法;只有三个步骤全部完成才能完成从各取一本书这件事,故完成这件事的方法种数有456=120种学生回答,投影学生答案.通过问题,达到复习两个基本原理的目的二、例题师提出问题:例1.给程序模块命名,需要用3个字符,其中首字符要求用字母AG或UZ,后两个要求用数字,问最多可以给多少个程序命名?分析:可以分成三个步骤:第1步,选首字符;第2步,选中间字符;第3步,选最后字符。而首字符又包含两类。师:学生阅读问题,启发学生回答后,作补充说明关键是让学生体会到数字符可以重复,因此第2步与第3步都有9种方法.同时,提示学生可以建立不同的模型,探索不同的解法.对实际问题的可以建立不同的模式,进行解答。学生通过多种模式的解答更加理解基本原理.二、例题师;提出例2例2.DNA分子是在生物细胞中发现的化学成分,一个RNA分子是一个有着数百个甚至数千个位置的长链,长链中每一个位置上都由一种称为碱基的化学成分所占据,共有4种不同的碱基,分别用A,C,G,U表示.在一个RNA分子中各种碱基能够以任意次序出现,所以在任意一个位置上的碱基与其他位置上的碱基无关.假设有一类RNA分子由100个碱基组成,那么能有多少种不同的RNA分子?分析:每一个位置都可以从A,C,G,U中任意选一个填入,每一个位置有 4种填充的方法.所以由分步乘法计数原理,可知分子数目有解:100个碱基组成的长链共有100个位置,每一个位置均可以从A、C、G、U中任选一个填入,每个位置有4种填法,根据分步乘法计数原理,N=4100师:让学生体会生活中的事例,同时让学生体会可重复排列的问题的特点.变式训练1:有三个人需要去5间工厂参加社会实践,则有多少种分配方案? 分析:每个人均有5种可能性,按分步乘法计数原理N=53.变式训练2:计算机内部就采用了每一位只有0或1两种数字的记数法,为使计算机能够识别字符,需要对字符进行编码,每一个字符可以用一个或多个字节来表示,其中字节是计算机中数据储存的最小计量单位,每个字节由8个二进制位构成.问:(1)一个字节(8位)最多可以表示多少个不同的字符?(2)GB码包含了6763个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?分析:每一位置只有两个可能:0,1.因此可以用分步乘法原理来求解本题.解:(1)每一个字节共有2个选择,一个字节共有8位.根据分步乘法计数原理,一个字节最多可以表示28=256(种);(2)2个字符可以表示256256=65536个不同的字符,这已经大于6763.所以至少用2个字符即可.学生体会在实际问题中分步乘法原理在实际中的运用.变式训练,巩固知识本题思想类似例1、例2,学生可以更好体会可重复排列的解决途径.二、例题例3.随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需要扩容.交通管理部门出台了一种汽车牌照都必须有3个不重复 英文字母和3个不重复的阿拉伯数字,并且3个字母必须合成一组出现,3个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?分析:应该分成两类,字母+数字或数字+字母.第一类时,在分成6步,依次可以算出每一个位置的选法.再同理可以计算第2类的选法.解:将汽车牌照分为2类,一类的字母组合在左,另一类的字母组合在右.字母组合在左时,分6个步骤确定一个牌照的字母和数字:第1步,从26个字母中选1个,放在首位,有26种选法;第2步,从剩下25个字母中选1个,放在第2位,有25种选法;第3步,从剩下24个字母中选1个,放在第3位,有24种选法;第4步,从10个数字中选1个,放在第4位,有10种选法;第5步,从剩下的9个数字中选1个,放在第5位,有9种选法;第6步,从剩下的8个数字中选1个,放在第6位,有8种选法;根据分步乘法计数原理,2625241098=11232000同理,字母组合在右 牌照也有11232000个.所以,共能给11232000+11232000=22464000辆汽车上牌照.三、课堂练习P10 1、2、3、4让学生能够熟练使用公式四、小结归纳这节课主要学习两类问题:1、可重复排列的问题(关键是分清问题中是“无重复”还是“有重复”);2、分类和分步的先后问题(对于多个约束条件的问题,要分析每一个条件,再综合考虑是分类还是分步,或交替使用;也可以去除不符合条件的情况获得结果).练习与测试:1.有4封不同的信投入3个不同的信箱,可有 种不同的投入方法.解:每一封信均有3种可能投入不同的信箱,所以根据分步乘法计数原理N=34=81.2.某班一天上午排语、数、英、体4门课,其中体育课不排第1、4节,则不同排法的种数是 .解:体育课可以排在第2、3节,可以考虑先分类.体育课在第2节课时,在语、数、英中选1个上第1节课,有3种取法;在剩下的2个中取1个上第3节课,有2种取法;剩下1个上第4节课,有1种取法.有分步乘法计数原理,N1=321=6.同样,体育课在第3节课时,也有6种。根据分类加法计数原理,N=123.已知,则可表示不同的值的个数是 解:x的取法有3种,y的取法也有3种,而且xy没有相同的值,所以由分步加法计数原理,可知33=9.4.已知,则所表示的不同的圆共有 个解:a的取法有3种取法,b的取法有4种取法,r的取法有2种取法.根据分步乘法计数原理,有342=24种5.在所有的两位数中,个位数字小于十位数字的共有多少个?解:十位数字可以分为是1至9,当十位数字是9的时候,个位数字可以从0、1、2、3、4、5、6、7、8选出1个,有9种取法;当十位数字是8的时候,个位数字可以从0、1、2、3、4、5、6、7选出1个,有8种取法;,当十位数字是1的时候,个位数字可以从0选出1个,有1种取法.根据分类加法计数原理,N=9+8+7+6+5+4+3+2+1=456.某演出队有8名歌舞演员,其中6人会表演舞蹈节目,有5人会表演歌唱节目,今从这8人中选出2人,一人表演舞蹈,一人表演歌唱,则选法一共有 种.解:6+5-8=3,有3人既会歌唱又会舞蹈,可以分成3类.第1类,从只会歌唱的选1人,有2种选法,从只会舞蹈的选1人,有3种选法.根据分步乘法计数原理,N1=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 目视化管理与产品开发考核试卷
- 锑冶炼生产数据分析与应用技巧考核试卷
- 管道工程法律法规政策深度研究与探讨考核试卷
- 铁路轨道电路调试技术考核试卷
- 航空航天器材料与工艺考核试卷
- 新生儿黄疸检测的临床意义
- 肺部真菌感染诊断与治疗进展
- 转运呼吸机操作规范
- 防呼吸道传染病科普讲座
- 视网膜动脉阻塞性疾病
- 小区弱电施工组织设计及施工方案
- 2025年湖北省技能高考(建筑技术类)《建筑工程测量》模拟练习试题库(含答案)
- SCR脱硝催化剂体积及反应器尺寸计算表
- 光伏电站小EPC规定合同范本
- 现代艺术教育理念探析-洞察分析
- 2025年合肥市公安局第二批招考聘用警务辅助人员678人高频重点提升(共500题)附带答案详解
- 工程交验后服务措施
- 2024年重庆公务员考试试题及答案
- 小学生玩手机危害课件
- 2025年教师招聘教师资格面试逐字稿初中体育教师招聘面试《蹲踞式跳远》试讲稿(逐字稿)
- 2025年中国石油集团招聘笔试参考题库含答案解析
评论
0/150
提交评论