2.1.1椭圆及其标准方程(2).doc_第1页
2.1.1椭圆及其标准方程(2).doc_第2页
2.1.1椭圆及其标准方程(2).doc_第3页
2.1.1椭圆及其标准方程(2).doc_第4页
2.1.1椭圆及其标准方程(2).doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.2.1 椭圆及其标准方程(2) 学习目标 1掌握点的轨迹的求法;2进一步掌握椭圆的定义及标准方程 学习过程 一、课前准备(预习教材理P41 P42,文P34 P36找出疑惑之处)复习1:椭圆上一点到椭圆的左焦点的距离为,则到椭圆右焦点的距离是 复习2:在椭圆的标准方程中,则椭圆的标准方程是 二、新课导学 学习探究问题:圆的圆心和半径分别是什么?问题:圆上的所有点到 (圆心)的距离都等于 (半径) ;反之,到点的距离等于的所有点都在圆 上 典型例题例1在圆上任取一点,过点作轴的垂线段,为垂足.当点在圆上运动时,线段的中点的轨迹是什么?变式: 若点在的延长线上,且,则点的轨迹又是什么?小结:椭圆与圆的关系:圆上每一点的横(纵)坐标不变,而纵(横)坐标伸长或缩短就可得到椭圆例2设点的坐标分别为,.直线相交于点,且它们的斜率之积是,求点的轨迹方程 变式:点的坐标是,直线相交于点,且直线的斜率与直线的斜率的商是,点的轨迹是什么? 动手试试练1求到定点与到定直线的距离之比为的动点的轨迹方程练2一动圆与圆外切,同时与圆内切,求动圆圆心的轨迹方程式,并说明它是什么曲线三、总结提升 学习小结1. 注意求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式;相关点法:寻求点的坐标与中间的关系,然后消去,得到点的轨迹方程 知识拓展椭圆的第二定义:到定点与到定直线的距离的比是常数的点的轨迹定点是椭圆的焦点;定直线是椭圆的准线;常数是椭圆的离心率 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1若关于的方程所表示的曲线是椭圆,则在( )A第一象限 B第二象限 C第三象限 D第四象限2若的个顶点坐标、,的周长为,则顶点C的轨迹方程为( )A B C D3设定点 ,动点满足条件,则点的轨迹是( )A椭圆 B线段 C不存在 D椭圆或线段4与轴相切且和半圆内切的动圆圆心的轨迹方程是 5. 设为定点,|=,动点满足,则动点的轨迹是 课后作业 1已知三角形的一边长为,周长为,求顶点的轨迹方程2点与定点的距离和它到定直线的距离的比是,求点的轨迹方程式,并说明轨迹是什么图形2.2.2 椭圆及其简单几何性质(1) 学习目标 1根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形;2根据几何条件求出曲线方程,并利用曲线的方程研究它的性质,画图 学习过程 一、课前准备(预习教材理P43 P46,文P37 P40找出疑惑之处)复习1: 椭圆上一点到左焦点的距离是,那么它到右焦点的距离是 复习2:方程表示焦点在轴上的椭圆,则的取值范围是 二、新课导学 学习探究问题1:椭圆的标准方程,它有哪些几何性质呢?图形:范围: :对称性:椭圆关于 轴、 轴和 都对称;顶点:( ),( ),( ),( );长轴,其长为 ;短轴,其长为 ;离心率:刻画椭圆 程度 椭圆的焦距与长轴长的比称为离心率,记,且试试:椭圆的几何性质呢?图形:范围: :对称性:椭圆关于 轴、 轴和 都对称;顶点:( ),( ),( ),( );长轴,其长为 ;短轴,其长为 ;离心率: = 反思:或的大小能刻画椭圆的扁平程度吗? 典型例题例1 求椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标变式:若椭圆是呢?小结:先化为标准方程,找出 ,求出; 注意焦点所在坐标轴例2 点与定点的距离和它到直线的距离的比是常数,求点的轨迹小结:到定点的距离与到定直线的距离的比为常数(小于1)的点的轨迹是椭圆 动手试试练1求适合下列条件的椭圆的标准方程:焦点在轴上,;焦点在轴上,;经过点,;长轴长等到于,离心率等于三、总结提升 学习小结1 椭圆的几何性质:图形、范围、对称性、顶点、长轴、短轴、离心率;2 理解椭圆的离心率 知识拓展(数学与生活)已知水平地面上有一篮球,在斜平行光线的照射下,其阴影为一椭圆,且篮球与地面的接触点是椭圆的焦点 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1若椭圆的离心率,则的值是( )A B或 C D或2若椭圆经过原点,且焦点分别为,则其离心率为( )A B C D3短轴长为,离心率的椭圆两焦点为,过作直线交椭圆于两点,则的周长为( )A B C D4已知点是椭圆上的一点,且以点及焦点为顶点的三角形的面积等于,则点的坐标是 5某椭圆中心在原点,焦点在轴上,若长轴长为,且两个焦点恰好将长轴三等分,则此椭圆的方程是 课后作业 1比较下列每组椭圆的形状,哪一个更圆,哪一个更扁?与 ; 与 2求适合下列条件的椭圆的标准方程:经过点,;长轴长是短轴长的倍,且经过点;焦距是,离心率等于2.2.2 椭圆及其简单几何性质(2) 学习目标 1根据椭圆的方程研究曲线的几何性质;2椭圆与直线的关系 学习过程 一、课前准备(预习教材理P46 P48,文P40 P41找出疑惑之处)复习1: 椭圆的焦点坐标是( )( ) ;长轴长 、短轴长 ;离心率 复习2:直线与圆的位置关系有哪几种?如何判定? 二、新课导学 学习探究问题1:想想生活中哪些地方会有椭圆的应用呢?问题2:椭圆与直线有几种位置关系?又是如何确定?反思:点与椭圆的位置如何判定? 典型例题例1 一种电影放映灯泡的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分过对称轴的截口是椭圆的一部分,灯丝位于椭圆的一个焦点上,片门位于另一个焦点上,由椭圆一个焦点发出的光线,经过旋转椭圆面反射后集中到另一个焦点,已知,试建立适当的坐标系,求截口所在椭圆的方程变式:若图形的开口向上,则方程是什么?小结:先化为标准方程,找出 ,求出; 注意焦点所在坐标轴变式:最大距离是多少? 动手试试练1已知地球运行的轨道是长半轴长,离心率的椭圆,且太阳在这个椭圆的一个焦点上,求地球到太阳的最大和最小距离练2经过椭圆的左焦点作倾斜角为的直线,直线与椭圆相交于两点,求的长 三、总结提升 学习小结1 椭圆在生活中的运用;2 椭圆与直线的位置关系: 相交、相切、相离(用判定) 知识拓展直线与椭圆相交,得到弦,弦长 其中为直线的斜率,是两交点坐标 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1设是椭圆 ,到两焦点的距离之差为,则是( )A锐角三角形 B直角三角形C钝角三角形 D等腰直角三角形2设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点,若F1PF2为等腰直角三角形,则椭圆的离心率是( )A. B. C. D. 3已知椭圆的左、右焦点分别为,点P在椭圆上,若P、F1、F2是一个直角三角形的三个顶点,则点P到轴的距离为( )A. B. 3 C. D. 4椭

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论