椭圆及其标准方程(—).doc_第1页
椭圆及其标准方程(—).doc_第2页
椭圆及其标准方程(—).doc_第3页
椭圆及其标准方程(—).doc_第4页
椭圆及其标准方程(—).doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长春师范学院数学学院说课教案05级 5 班 姓名: 韩玉 学号:0507140312椭圆及其标准方程()一、 教材分析(一)、教材内容的地位和作用椭圆及其标准方程是高二数学上(试验修订本必修)(人民教育出版社出版)第八章的第一节内容,分三课时完成. 第一课时讲解椭圆的定义及其标准方程;第二课时讲解运用椭圆的定义及其标准方程解题,巩固求曲线方程的两种基本方法,即待定系数法、定义法;第三课时讲解运用中间变量法求动点轨迹方程的基本思路. 现在说第一课时. 本节内容是继学生学习了直线和圆的方程,对曲线的方程的概念有了一定了解,对用坐标法研究几何问题有了初步认识的基础上,进一步学习用坐标法研究曲线. 椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础. 因此这节课有承前启后的作用,是本章和本节的重点内容之一.(二)、教学目标 1. 知识与技能目标:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导. 2. 过程与方法目标:通过让学生积极参与、亲身经历椭圆定义和标准方程的获得过程,体验坐标法在处理几何问题中的优越性,从而进一步掌握求曲线方程的方法和数形结合的思想,提高运用坐标法解决几何问题的能力及运算能力. 3. 情感态度与价值观目标:通过主动探究、合作学习,相互交流,感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,养成实事求是的科学态度和契而不舍的钻研精神,同时培养学生运动、变化和对立统一的观点. 以“神舟五号”飞船运动轨迹的演示,激发学生学习数学的兴趣,增强学生的数学应用意识、创新意识,扩展学生的数学视野,并让学生受到爱国主义思想的教育,使之逐步认识到数学的科学价值、应用价值和文化价值.(三)、教学重点、难点1. 教学重点:椭圆的定义及其标准方程 确定依据 教学大纲 学生情况 解决方法 为了突出重点,让学生动手实践,自主探索,通过画图揭示椭圆上的点所要满足的条件,由此得出定义,推出方程.2. 教学难点:椭圆标准方程的推导 解决方法 为了突破此难点,关键是抓住 怎样建立坐标系 并把实际问题数学化即建模和 怎样简化方程 两个环节来进行方程的推导.二、教法、学法分析(一) 教法:根据以上的分析及本节课的内容和学生的认知水平,采用在教师指导下的学生探究发现教学法. 通过这样的教法可以充分调动学生学习的主动性、积极性,使课堂气氛更加活跃. 同时培养了学生自主学习,动手探究的能力.(二) 学法:自主探究,合作交流 授人以鱼,不如授人以渔. 教给学生如何学习是教师的职责,因此在本节课的教学中,教会学生动手尝试、仔细观察、开动脑筋、分析讨论,最后抽象出概念,推出方程. 这样有利于学生发挥学习的主动性,使学生的学习过程成为在教师引导下的“再创造”过程.三、说教学程序 教学流程 设计思路与媒体应用分析(一) 创设情景,提出课题 本节课的开始由多媒体演示“神舟五号”飞船绕地球旋转运行的画面,并描绘出运行轨迹图.问 一 2003年10月15日,中国“神舟五号”飞船试验成功,实现了中国人的千年飞天梦. 请问:“神舟五号”飞船绕地球旋转的轨迹是什么图形?此时老师可以指出,在天体运行的轨道中,除椭圆外,还有抛物线、双曲线等. 再运用多媒体演示一个平面截圆锥的各种情形,向学生介绍“圆锥曲线” 这个名称的来历,并让学生举出实际生产、生活中有关椭圆的例子.(二) 自主探究,形成概念问 二 曲线可以看作适合某种条件的点的集合或轨迹. 椭圆是满足什么条件的点的轨迹呢?此时教师引导:要想知道椭圆是满足什么条件的点的轨迹,首先要知道椭圆的画法(几何特征). 于是让学生拿出课前准备好的一块纸板,一段细绳,两枚图钉,按课本上介绍的方法,同桌间相互磋商、动手绘图,教师巡视,并抽已完成的两位同学在黑板上用准备好的工具演示,使学生尝试到成功的喜悦. 教师进一步启发引导学生讨论,得出“到两个定点的距离的和等于常数的点的轨迹是椭圆”时,马上提出第三个问,让学生回答.问 三 1. 在纸板上作图说明了什么? 2. 在绳长 (设为 2 a )不变的条件下,改变两个图钉之间的距离(设为2 c),画出的椭圆有何变化? 3. 当两个图钉之间的距离等于绳长时,画出的图形是什么? 4.当两图钉固定,能使绳长小于两图钉之间的距离吗?能画出图形吗? 教师让学生再一次动手实践,相互讨论交流,然后抽学生代表发表意见,同时教师运用多媒体进行配合说明,可以得出:当 2 a 2 c 时,是椭圆,并且当两定点间的距离越小,椭圆越圆,特别地当两点重合时,是圆,两定点间的距离越大,椭圆越扁;当 2 a = 2 c 时是线段;当 2 a 0) ,则有F1(c, 0)、F2 (c ,0). 又设 M与F1 和F2 的距离的和等于常数 2 a ( a 0 ) .2. 写出点集:让学生利用两点的距离公式,根据椭圆定义列出:P = M | |MF1 | + |MF2 | = 2 a .到此为止,学生以为椭圆的方程已求出,此时教师可以指出:为了更进一步利用方程探讨椭圆的其他性质需要尽量简化方程形式,使数量关系更加明朗化.4. 化简方程:学生对含有两个根式之和的等式进行化简有一定困难,教师可采用以下方法突破难点:首先让学生明确,含根号的等式化简的目的就是要去掉根号,变无理式为有理式;其次复习含有一个根式的等式的化简方法将根式放在等式的一边,其它项移到等式另一边,两边平方可去掉根号;有了这一基础,可启发学生,化简含两个根式之和的等式,只要将两个根式分别放在等号两边,其中一边只含一个根式,平方一次后即可转化为只含一个根式的化简问题. 教师引导学生化简,得到 (a 2 c 2 ) x 2 + a 2 y 2 = a 2 (a 2 c 2 ) . 指出:此方程形式还不够简捷,还有变形的必要,5. 证明:证明以化简后的方程的解为坐标的点都是曲线上的点,一般情况下,化简前后方程的解集是相同的,此步可以省略. 如有特殊情况,应给出说明. 另外步骤2也可省略,直接列出曲线的方程.问 六 如果焦点F1 、F2 在 y 轴上,并且点O 与线段F1 F2 的中点重合,a、b、c 的意义同上,椭圆的方程形式又如何呢? 为了让学生加深对椭圆的两种标准方程的理解,下面举例,巩固练习. 1. 指出在下列方程中,哪些是椭圆的标准方程?哪些是椭圆的方程?(让学生思考、抢答)2.比较椭圆的两种标准方程,填表. (学生讨论回答,教师板书)不同点标准方程图形焦点坐标共同点定义a、b、c的关系焦点位置的判定让学生形成椭圆的感性认识,感受数学的应用价值,明白生活实践中有很多数学问题,数学来源于实践,同时培养学生学会用数学眼光去观察周围事物的能力,并体现了爱国主义思想的渗透.使学生对圆锥曲线有初步的感性认识,同时对本章要学习的内容产生兴趣,培养学生对立统一的观点. 教师也可以很自然的引出课题.“思维从疑问开始” ,由于学生熟知“到定点距离等于定长的点的轨迹是圆”,通过创设情景,激发了学生的求知欲,使学生急于想知道椭圆是满足什么条件的点的轨迹,但现有知识又无从回答,形成认知冲突,使学生进入愤悱状态.按学生的认识规律与心理特征引导学生自己探索、分析,启发学生认识新的概念,这有利于学生对概念的全面理解,同时培养了学生从量变到质变的辨证思维. 让学生明确思维的目的,通过复习旧知,为下一步学习搭桥铺路.因为正确选取坐标系是解析几何解题的基本技巧之一,故设计目的是为了着重培养学生这方面的能力.再一次体现解析几何的基本思想,即用代数方法研究几何问题.在解决解析几何问题中,熟练运用代数变形技巧是十分重要的,学生常因运算能力不强而功亏一篑,故在此,教师不失时机地加强了运算技能的训练. 该问的设置,一方面是为了得出焦点在 y 轴上的椭圆的标准方程;另一方面通过学生的猜想,充分发挥学生的直觉思维和数学悟性. 调动了学生学习的主动性和积极性,通过动手验证,培养了学生严谨的学习作风和类比的能力.使学生进一步理解方程,掌握方程的本质特征,揭示规律,充分展示数形结合的和谐美、统一美,同时为解决例题做铺垫.(四) 初步运用,强化理解例 题 1. 判定下列椭圆的焦点在哪个轴上,并指明 a2,b2 和焦点坐标. (五) 自我评价,反馈调节(六) 知识整理,形成系统(由学生归纳,教师完善) 1. 椭圆的定义(注意定义中的三个条件) 2. 椭圆的标准方程(注意焦点的位置与方程形式的关系) 3. 解析几何的基本思想(七) 布置作业,巩固提高(学有余力的学生全做,其余学生不做探究题) 1. 课本习题 8. 1 第 1 (2)、4 题 2. 课后探究题:数学概念是要在运用中得以巩固的,通过该例题使学生进一步理解椭圆的定义,掌握标准方程,使知识内化为智能,并在解题过程中感受 数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论