




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
电偶冷端补偿2008-06-30 11:28温度测量应用中有多种类型的变送器,热电偶是最常用的一种,可广泛用于汽车、家庭等领域。与RTD、电热调节器、温度检测集成电路(IC)相比,热电偶能够检测更宽的温度范围,具有较高的性价比。另外,热电偶的牢固、可靠性和快速响应时间使其成为各种工作环境下的首要选择。当然,热电偶在温度测量中也存在一些缺陷,例如,线性特性较差。虽然它们与RTD、温度传感器IC相比可以测量更宽的温度范围,但线性度却大打折扣。除此之外,RTD和温度传感器IC可以提供更高的灵敏度和精度,可理想用于精确测量系统。热电偶信号电平很低,常常需要放大或高分辨率数据转换器进行处理。如果排除上述问题,热电偶的低价位、易使用、宽温度范围使其得到广泛使用。 热电偶基础热电偶是差分温度测量器件,由两段不同的金属/合金线构成,一段用作正端,另一段用作负端。表1列出了四种最常用的热电偶类型、所用金属以及对应的温度测量范围。每种热电偶在其规定的温度范围内具有独特的热电特性。表1. 常用的热电偶类型 类型正端金属/合金负端金属/合金温度范围(C)T铜镍铜合金-200至+350J铁镍铜合金0至+750K镍铬合金镍基热电偶合金-200至+1250E镍铬合金镍铜合金-200至+900两种不同类型的金属接(焊接)在一起后形成两个结点,如图1a所示,环路电压是两个结点温差的函数。这种现象称为Seebeck效应,用于解释热能转换为电能的过程。Seebeck效应相对于Peltier效应,Peltier效应用于解释电能转换成热能的过程,典型应用有电热致冷器。图1a所示,测量电压VOUT是检测端(热端)结电压与参考端(冷端)结电压之差。因为VH和VC是由两个结的温度差产生的,VOUT也是温差的函数。定标因数,对应于电压差与温差之比,称为Seebeck系数。图1a. 环路电压由热电偶两个结点之间的温差产生,是Seebeck效应的结果。图1b. 常见的热电偶配置由两条线连接在一端,每条线的开路端与铜恒温线连接。 图1b所示是一种最常见的热电偶应用。该配置中引入了第三种金属(中间金属)和两个额外的节点。本例中,每个开路端与铜线电气连接,这些连线为系统增加了两个额外节点,只要这两个节点温度相同,中间金属(铜)不会影响输出电压。这种配置允许热电偶在没有独立参考结点的条件下使用。VOUT仍然是热端与冷端温度之差的函数,与Seebeck系数有关。然而,由于热电偶测量的是温度差,为了确定热端的实际温度,冷端温度必须是已知的。冷端温度为0C (冰点)时是一种最简单的情况,如果TC = 0C, 则VOUT = VH。这种情况下,热端测量电压是结点温度的直接转换值。美国国家标准局(NBS)提供了各种类型热电偶的电压特征数据与温度对应关系的查找表。所有数据均基于0C冷端温度。利用冰点作为参考点,通过查找适当表格中的VH可以确定热端温度。在热电偶应用初期,冰点被当作热电偶的标准参考点,但在大多数应用中获得一个冰点参考温度不太现实。如果冷端温度不是0C,那么,为了确定实际热端温度必须已知冷端温度。考虑到非零冷端温度的电压,必需对热电偶输出电压进行补偿,既所谓的冷端补偿。选择冷端温度测量器件如上所述,为了实现冷端补偿,必须确定冷端温度,这可以通过任何类型的温度检测器件实现。在通用的温度传感器IC、电热调节器和RTD中,不同类型的器件具有不同的优、缺点,需根据具体应用进行选择。对于精度要求非常高的器件,经过校准的铂RTD能够在很宽的温度范围内保持较高精度,但其成本很高。精度要求不是很高时,热敏电阻和硅温度传感器IC能够提供较高的性价比,热敏电阻比硅IC具有更宽的测温范围,而传感器IC具有更高的线性度,因而性能指标更好一些。修正热敏电阻的非线性会占用较多的微控制器资源。温度传感器IC具有出色的线性度,但测温范围很窄。总之,必需根据系统的实际需求选择冷端温度测量器件,需要仔细考虑精度、温度范围、成本和线性指标,以便得到最佳的性价比。考虑因素一旦建立了冷端补偿方法,补偿输出电压必须转换成相应的温度。一种简单的方法既是使用NBS提供的查找表,用软件实现查找表需要存储器,但查找表对于连续的重复查询提供了一种快速、精确的测量方案。将热电偶电压转换成温度值的另外两种方案比查找表复杂一些,这两种方法是:1) 利用多项式系数进行线性逼近,2) 对热电偶输出信号进行模拟线性化处理。软件线性逼近只是需要预先确定多项式系数,不需要存储,因而是一种更通用的方案。缺点是需要较长时间解多阶多项式,多项式阶数越高,处理时间越长,特别是在温度范围较宽的情况下。多项式阶数较高时,查找表相对提供了一种精度更高、更有效温度测量方案。出现软件测试方案之前,模拟线性化常被用来将测量电压转换成温度值(除了人工查找表检索外)。这种基于硬件的方法利用模拟电路修正热电偶响应的非线性。其精度取决于修正逼近多项式的阶数,在目前能够测试热电偶信号的万用表中仍采用这种方法。应用电路下面讨论了三种利用硅传感器IC进行冷端补偿的典型应用,三个电路均用来解决温度范围较窄(0C至+70C和-40C至+85C)的冷端温度补偿,精度在几个摄氏度以内。第二个电路包含一个远端二极管温度检测器,由连接成二极管的晶体管为其提供测试信号。第三个电路中的模/数转换器(ADC)内置冷端补偿。所有三个电路均采用K型热电偶(由镍铬合金和镍基热电偶合金组成)进行温度测量。示例#1图2所示电路中,16位- ADC将低电平热电偶电压转换成16位串行数据输出。集成可编程增益放大器有助于改善ADC的分辨率,这对于处理热电偶小信号输出非常必要。温度检测IC靠近热电偶安装,用于测量冷端附近的温度。这种方法假设IC温度近似等于冷端温度。冷端温度传感器输出由ADC的通道2进行数字转换。温度传感器内部的2.56V基准节省了一个外部电压基准IC。 图2. 本地温度检测IC (MAX6610)确定冷端温度。温度检测IC靠近热电偶接点(冷端)放置,热电偶和冷端温度传感器输出电压由16位ADC (MX7705)转换。 工作在双极性模式时,ADC可以转换热电偶的正信号和负信号,并在通道1输出。ADC的通道2将MAX6610的单端输出电压转换成数字信号,提供给微控制器。温度检测IC的输出电压与冷端温度成正比。为了确定热端温度,需首先确定冷端温度。然后通过NBS提供的K型热电偶查找表将冷端温度转换成对应的热电电压。将此电压与经过PGA增益校准的热电偶读数相加,最后再通过查找表将求和结果转换成温度,所得结果即为热端温度。表2列出了温度测量结果,冷端温度变化范围:-40C至+85C,热端保持在+100C。实际测量结果在很大程度上取决于本地温度检测IC的精度和烤箱温度。表2. 图2电路在不同烤箱的冷端和热端测量温度 冷端温度(C)热端测量温度*(C)测量值#1-39.9+101.4测量值#20.0+101.5测量值#3+25.2+100.2测量值#4+85.0+99.0* “热端测量温度”是经过补偿的数值,由电路测量得到。示例#2图3所示电路中,远端温度检测IC测量电路的冷端温度,与本地温度检测IC不同的是IC不需要靠近冷端安装,而是通过外部连接成二极管的晶体管测量冷端温度。晶体管直接安装在热电偶接头处。温度检测IC将晶体管的测量温度转换成数字输出。ADC的通道1将热电偶电压转换成数字输出,通道2没有使用,输入直接接地。外部2.5V基准IC为ADC提供基准电压。图3. 远端二极管温度检测IC不必靠近冷端,因为它使用了一个外部二极管检测温度。MAX6002为ADC提供2.5V基准电压。表3列出了温度测量结果,冷端温度变化范围:-40C至+85C,热端保持在+100C。实际测量结果在很大程度上取决于远端二极管温度检测IC的精度和烤箱温度。表3. 图3电路在不同烤箱的冷端和热端测量温度 冷端温度(C)热端测量温度*(C)测量值#1-39.8+99.1测量值#2-0.3+98.4测量值#3+25.0+99.7测量值#4+85.1+101.5* “热端测量温度”是经过补偿的数值,由电路测量得到。 示例#3图4电路中的12位ADC带有温度检测二极管,温度检测二极管将环境温度转换成电压量,IC通过处理热电偶电压和二极管的检测电压,计算出补偿后的热端温度。数字输出是对热电偶测试温度进行补偿后的结果,在0C至+700C温度范围内,器件温度误差保持在9 LSB以内。虽然该器件的测温范围较宽,但它不能测量0C以下的温度。图4. 集成了冷端补偿的ADC,将热电偶电压转换为温度,无需外部元件。 表4是4所示电路的测量结果,冷端温度变化范围:0C至+70C,热端温度保持在+100C。表4. 图4电路在不同烤箱的冷端和热端测量温度 冷端温度(C)热端测量温度*(C)测量值#10.0+100.25测量值#2+25.2+100.25测量值#3+50.1+101.0测量值#4+70.0+101.25* “热端测量温度”是经过补偿的数值,由电路测量得到。结论由于热电偶是差分温度测量器件,在处理热电偶信号时必须建立一个参考点。热电偶所提供的电压体现了热端与冷端的温度差。如果已知冷端温度和相对于冷端的热端温度,即可确定出热端的实际温度值。冷端补偿器件的选择标准与精度、成本、线性度、温度范围等因素有关,铂RTD精度最高,但成本也最高。电热调节器价格低、可工作在较宽的温度范围,但其线性度较差。硅温度传感器检测IC工作温度范围较窄,但具有合理的精度和线性度,成本也比较低,能够满足多数热电偶应用的需求。热电偶冷端的温度补偿2007-01-26来源:西部工控网浏览:53 热电偶材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表距离都很远,节省热电偶材料,降低成本,通常采用补偿导线把热电偶冷端(自由端)延伸到温度比较稳定控制室内,连接到仪表端子上。必须指出,热电偶补偿导线作用只起延伸热电极,使热电偶冷端移动到控制室仪表端子上,它本身并不能消除冷端温度变化对测温影响,不起补偿作用。,还需采用其他修正方法来补偿冷端温度t00时对测温影响。 使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端温度不能超过100。常用热电偶补偿导线列于表3-1中。表3-1常用热电偶补偿导线配用热电偶分度号 补偿导线型号 补偿导线正极 补偿导线负极 补偿导线100热电势允许误差,mV 材料 颜色 材料 颜色 A(精密级) B(精密级) S SC 铜 红 铜镍 绿 0.6450.023 0.6450.037 K KC 铜 红 铜镍 蓝 4.0950.063 4.0950.105 K KX 镍铬 红 镍硅 黑 4.0950.063 4.0950.105 E EX 镍铬 红 铜镍 棕 6.3170.102 6.3170.170 J JX 铁 红 铜镍 紫 5.2680.081 5.2680.135 T TX 铜 红 铜镍 白 4.2770.023 4.2770.047 注:补偿导线型号头一个字母与热电偶分度号相对应;第二个字母字X表示延伸型补偿导线,字母C表示补偿型补偿导线。 1、冷端温度校正法 因各种热电偶分度关系是冷端温度为0时到,测温热电偶热端为t,冷端温度t0(t00),就不能用测E(t,t0)去查分度表t,必须下式进行修正:式中:E(t,0)-冷端为0而热端为t时热电势;E(t, t0)-冷端为t0而热端为t时热电势;E(t0,0)-冷端为0时应加校正值。 2、仪表机械零点调整法 具有零位调整显示仪表而言,热电偶冷端温度t0较为恒定时,可采用测温系统未工作前,预先将显示仪表机械零点调整到t0上,这相当于把热电势修正值E(t0,0)预先加到了显示仪表上,当此测量系统投入工作后,显示仪表示值就是实际被测温度值。 3、补偿电桥法 当热电偶冷端处温度波动较大时,一般采用补偿电桥法,基测量线路如图3-1所示。补偿电桥法是利用不平衡电桥(又称冷端补偿器)产生不平衡电压来自动补偿热电偶因冷端温度变化而引起热电势变化。 采用补偿电桥法是必须注意下列几点: (1)补偿器接入测量系统时正负极性不可接
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 气管肿瘤术后护理规范与要点
- 原地单手肩上投篮
- 劳动教育实施路径与实践创新
- 中华护理学会介绍
- 呼吸内科创建简介
- 采购招标法律法规
- 购物中心教育培训商业化探索
- 手术室胃切除护理查房
- 子痫前期重度术后护理
- 2025年零售门店数字化技术应用在顾客互动营销中的策略报告
- (完整版)杭州电子科技大学数字电路期末考试试卷及答案
- 员工宿舍核查表
- 腰椎椎管狭窄症治疗的新方法课件
- 完工付款最终付款申请表
- 有限空间作业及应急物资清单
- 国际经济学期末考试试题库含答案
- 基于PLC的音乐喷泉控制系统的设计-毕业设计
- 体育场地与设施
- 广西大学数学建模竞赛选拔赛题目
- 受戒申请表(共3页)
- 五年级部编版语文下学期修改病句专项强化练习题
评论
0/150
提交评论