高考数学一轮复习 高考大题增分专项4 高考中的立体几何课件.ppt_第1页
高考数学一轮复习 高考大题增分专项4 高考中的立体几何课件.ppt_第2页
高考数学一轮复习 高考大题增分专项4 高考中的立体几何课件.ppt_第3页
高考数学一轮复习 高考大题增分专项4 高考中的立体几何课件.ppt_第4页
高考数学一轮复习 高考大题增分专项4 高考中的立体几何课件.ppt_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高考大题增分专项四高考中的立体几何 2 从近五年的高考试题来看 立体几何是历年高考的重点 约占整个试卷的13 通常以一大一小的模式命题 以中 低档难度为主 三视图 简单几何体的表面积与体积 点 线 面位置关系的判定与证明以及空间角的计算是考查的重点内容 前者多以客观题的形式命题 后者主要以解答题的形式加以考查 着重考查推理论证能力和空间想象能力 而且对数学运算的要求有加强的趋势 转化与化归思想贯穿整个立体几何的始终 3 题型一 题型二 题型三 线线 线面平行或垂直的转化1 在解决线线平行 线面平行问题时 若题目中已出现了中点 可考虑在图形中再取中点 构成中位线进行证明 2 要证明线面平行 先在平面内找一条直线与已知直线平行 或找一个经过已知直线与已知平面相交的平面 找出交线 证明二线平行 3 要证明线线平行 可考虑公理4或转化为线面平行 4 要证明线面垂直可转化为证明线线垂直 应用线面垂直的判定定理与性质定理进行转化 4 题型一 题型二 题型三 例1在如图所示的几何体中 d是ac的中点 ef db 1 已知ab bc ae ec 求证 ac fb 2 已知g h分别是ec和fb的中点 求证 gh 平面abc 5 题型一 题型二 题型三 证明 1 因为ef db 所以ef与db确定平面bdef 连接de 因为ae ec d为ac的中点 所以de ac 同理可得bd ac 又bd de d 所以ac 平面bdef 因为fb 平面bdef 所以ac fb 6 题型一 题型二 题型三 2 设fc的中点为i 连接gi hi 在 cef中 因为g是ce的中点 所以gi ef 又ef db 所以gi db 在 cfb中 因为h是fb的中点 所以hi bc 又hi gi i 所以平面ghi 平面abc 因为gh 平面ghi 所以gh 平面abc 7 题型一 题型二 题型三 对点训练1 2017全国 文18 如图 四棱锥p abcd中 侧面pad为等边三角形且垂直于底面abcd ab bc ad bad abc 90 1 证明 直线bc 平面pad 2 若 pcd的面积为2 求四棱锥p abcd的体积 8 题型一 题型二 题型三 解 1 在平面abcd内 因为 bad abc 90 所以bc ad 又bc 平面pad ad 平面pad 故bc 平面pad 2 取ad的中点m 连接pm cm 由ab bc ad及bc ad abc 90 得四边形abcm为正方形 则cm ad 因为侧面pad为等边三角形且垂直于底面abcd 平面pad 平面abcd ad 所以pm ad pm 底面abcd 因为cm 底面abcd 所以pm cm 9 题型一 题型二 题型三 10 题型一 题型二 题型三 1 判定面面平行的四个方法 1 利用定义 即判断两个平面没有公共点 2 利用面面平行的判定定理 3 利用垂直于同一条直线的两平面平行 4 利用平面平行的传递性 即两个平面同时平行于第三个平面 则这两个平面平行 11 题型一 题型二 题型三 2 面面垂直的证明方法 1 用面面垂直的判定定理 即先证明其中一个平面经过另一个平面的一条垂线 2 用面面垂直的定义 即证明两个平面所成的二面角是直二面角 3 从解题方法上说 由于线线平行 垂直 线面平行 垂直 面面平行 垂直 之间可以相互转化 因此整个解题过程始终沿着线线平行 垂直 线面平行 垂直 面面平行 垂直 的转化途径进行 12 题型一 题型二 题型三 例2如图 四边形abcd是平行四边形 平面aed 平面abcd ef ab ab 2 bc ef 1 ae de 3 bad 60 g为bc的中点 1 求证 fg 平面bed 2 求证 平面bed 平面aed 3 求直线ef与平面bed所成角的正弦值 13 题型一 题型二 题型三 1 证明取bd中点o 连接oe og 在 bcd中 因为g是bc中点 又因为ef ab ab dc 所以ef og且ef og 即四边形ogfe是平行四边形 所以fg oe 又fg 平面bed oe 平面bed 所以 fg 平面bed 14 题型一 题型二 题型三 15 题型一 题型二 题型三 3 解因为ef ab 所以直线ef与平面bed所成的角即为直线ab与平面bed所成的角 过点a作ah de于点h 连接bh 又平面bed 平面aed ed 由 2 知ah 平面bed 所以 直线ab与平面bed所成的角即为 abh 16 题型一 题型二 题型三 对点训练2 2017北京 文18 如图 在三棱锥p abc中 pa ab pa bc ab bc pa ab bc 2 d为线段ac的中点 e为线段pc上一点 1 求证 pa bd 2 求证 平面bde 平面pac 3 当pa 平面bde时 求三棱锥e bcd的体积 17 题型一 题型二 题型三 1 证明 因为pa ab pa bc 所以pa 平面abc 又因为bd 平面abc 所以pa bd 2 证明 因为ab bc d为ac中点 所以bd ac 由 1 知 pa bd 所以bd 平面pac 所以平面bde 平面pac 3 解 因为pa 平面bde 平面pac 平面bde de 18 题型一 题型二 题型三 1 对命题条件的探索三种途径 1 先猜后证 即先观察与尝试给出条件再证明 2 先通过命题成立的必要条件探索出命题成立的条件 再证明充分性 3 将几何问题转化为代数问题 探索出命题成立的条件 2 对命题结论的探索方法 从条件出发 探索出要求的结论是什么 对于探索结论是否存在 求解时常假设结论存在 再寻找与条件相容或者矛盾的结论 19 题型一 题型二 题型三 例3在如图所示的几何体中 面cdef为正方形 面abcd为等腰梯形 ab cd ac ab 2bc 2 ac fb 1 求证 ac 平面fbc 2 求四面体f bcd的体积 3 线段ac上是否存在点m 使ea 平面fdm 证明你的结论 1 证明在 abc中 因为ac ab 2 bc 1 所以ac bc 又因为ac fb bc fb b 所以ac 平面fbc 20 题型一 题型二 题型三 2 解因为ac 平面fbc 所以ac fc 因为cd fc ac cd c 所以fc 平面abcd 在等腰梯形abcd中可得cb dc 1 所以fc 1 21 题型一 题型二 题型三 3 解线段ac上存在点m 且m为ac中点时 有ea 平面fdm 证明如下 连接ce 与df交于点n 取ac的中点m 连接mn 如图所示 因为四边形cdef为正方形 所以n为ce中点 所以ea mn 因为mn 平面fdm ea 平面fdm 所以ea 平面fdm 所以线段ac上存在点m 使得ea 平面fdm成立 22 题型一 题型二 题型三 对点训练3如图 直角梯形abcd中 ab cd ad ab cd 2ab 4 ad e为cd的中点 将 bce沿be折起 使得co de 其中点o在线段de内 1 求证 co 平面abed 2 问 ceo 记为 多大时 三棱锥c aoe的体积最大 最大值为多少 23 题型一 题型二 题型三 1 证明在直角梯形abcd中 cd 2ab e为cd的中点 则ab de 又ab de ad ab 知be cd 在四棱锥c abed中 be de be ce ce de e ce de 平面cde 则be 平面cde 因为co 平面cde 所以be co 又co de 且be de是平面abed内两条相交直线 故co 平面abed 24 题型一 题型二 题型三 25 题型一 题型二 题型三 1 三种平行关系的转化方向 如图所示 26 题型一 题型二 题型三 2 注重空间直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论