高中数学 第三章 函数的应用 3.1 函数与方程 3.1.1 方程的根与函数的零点课件 新人教A版必修1.ppt_第1页
高中数学 第三章 函数的应用 3.1 函数与方程 3.1.1 方程的根与函数的零点课件 新人教A版必修1.ppt_第2页
高中数学 第三章 函数的应用 3.1 函数与方程 3.1.1 方程的根与函数的零点课件 新人教A版必修1.ppt_第3页
高中数学 第三章 函数的应用 3.1 函数与方程 3.1.1 方程的根与函数的零点课件 新人教A版必修1.ppt_第4页
高中数学 第三章 函数的应用 3.1 函数与方程 3.1.1 方程的根与函数的零点课件 新人教A版必修1.ppt_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章函数的应用 3 1函数与方程3 1 1方程的根与函数的零点 1 理解函数零点的概念 以及了解函数的零点与方程根的关系 易混点 2 会求函数的零点 重点 3 掌握函数零点的存在性定理并会判断函数零点的个数 难点 学习目标 1 函数的零点对于函数y f x 把使 的实数 叫做函数y f x 的零点 2 函数的零点与方程的根的联系函数y f x 的零点就是方程f x 0的 也就是函数y f x 的图象与x轴交点的 f x 0 x 实数根 横坐标 3 函数零点存在性定理如果函数y f x 在区间 a b 上的图象是连续不断的一条曲线 并且有 那么 函数y f x 在区间 a b 内有零点 即存在c a b 使得 这个c也就是方程f x 0的根 f a f b 0 f c 0 判断下列说法是否正确 正确的在后面的括号内打 错误的打 1 函数f x 的零点就是函数y f x 的图象与x轴的交点 2 在闭区间 a b 上连续的曲线y f x 若f a f b 0 则函数y f x 在区间 a b 内仅有一个零点 3 在闭区间 a b 上连续的曲线y f x 若f a f b 0 则函数y f x 在区间 a b 内没有一个零点 答案 1 2 3 函数零点及求法 1 函数的零点是一个实数 当自变量取该值时 其函数值等于零 2 根据函数零点定义可知 函数f x 的零点就是方程f x 0的根 因此判断一个函数是否有零点 有几个零点 就是判断方程f x 0是否有实根 有几个实根 即函数y f x 的零点 方程f x 0的实根 函数y f x 的图象与x轴交点的横坐标 3 函数零点的求法 1 代数法 求方程f x 0的实数根 2 几何法 与函数y f x 的图象联系起来 图象与x轴的交点的横坐标即为函数的零点 判断函数零点所在的区间 1 确定函数零点所在区间的方法确定函数的零点 方程的根所在的区间时 通常利用零点存在性定理 转化为判断区间两端点对应的函数值的符号是否相反 2 判断函数零点所在区间的三个步骤 1 代 将区间端点代入函数求出函数的值 2 判 把所得函数值相乘 并进行符号判断 3 结 若符号为正且函数在该区间内是单调函数 则在该区间内无零点 若符号为负且函数连续 则在该区间内至少有一个零点 判断函数f x 2x lg x 1 2的零点个数 判断函数零点的个数 互动探究 将本例中函数解析式改为f x x 3 lnx呢 解 方法一 令f x x 3 lnx 0 则lnx 3 x 在同一平面直角坐标系内画出函数y lnx与y x 3的图象 如图所示 判断函数零点个数的方法判断函数零点的个数主要有以下几种方法 方法一 直接求出函数的零点进行判断 方法二 结合函数图象进行判断 方法三 借助函数的单调性进行判断 若函数f x 在区间 a b 上的图象是一条连续不断的曲线 且在区间 a b 上单调 满足f a f b 0 则函数f x 在区间 a b 上有且仅有一个零点 如图所示 1 方程f x g x 的根是函数f x 与g x 的图象交点的横坐标 也是函数y f x g x 的图象与x轴交点的横坐标 2 在函数零点存在性定理中 要注意三点 1 函数是连续的 2 定理不可逆 3 至少存在一个零点 3 解决函数的零点存在性问题常用的办法有三种 1 用定理 2 解方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论