




免费预览已结束,剩余3页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第4讲基本不等式【2013年高考会这样考】1考查应用基本不等式求最值、证明不等式的问题2考查应用基本不等式解决实际问题【复习指导】1突出对基本不等式取等号的条件及运算能力的强化训练2训练过程中注意对等价转化、分类讨论及逻辑推理能力的培养基础梳理1基本不等式:(1)基本不等式成立的条件:a0,b0.(2)等号成立的条件:当且仅当ab时取等号2几个重要的不等式(1)a2b22ab(a,br);(2)2(a,b同号);(3)ab2(a,br);(4)2(a,br)3算术平均数与几何平均数设a0,b0,则a,b的算术平均数为,几何平均数为,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数4利用基本不等式求最值问题已知x0,y0,则(1)如果积xy是定值p,那么当且仅当xy时,xy有最小值是2.(简记:积定和最小)(2)如果和xy是定值p,那么当且仅当xy时,xy有最大值是.(简记:和定积最大) 一个技巧运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a2b22ab逆用就是ab;(a,b0)逆用就是ab2(a,b0)等还要注意“添、拆项”技巧和公式等号成立的条件等 两个变形(1)2ab(a,br,当且仅当ab时取等号);(2) (a0,b0,当且仅当ab时取等号)这两个不等式链用处很大,注意掌握它们 三个注意(1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视要利用基本不等式求最值,这三个条件缺一不可(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致双基自测1(人教a版教材习题改编)函数yx(x0)的值域为()a(,22,) b(0,)c2,) d(2,)解析x0,yx2,当且仅当x1时取等号答案c2下列不等式:a212a;2;x21,其中正确的个数是()a0 b1 c2 d3解析不正确,正确,x2(x21)1211.答案b3若a0,b0,且a2b20,则ab的最大值为()a. b1 c2 d4解析a0,b0,a2b2,a2b22,即ab.答案a4(2011重庆)若函数f(x)x(x2)在xa处取最小值,则a()a1 b1 c3 d4解析当x2时,x20,f(x)(x2)22 24,当且仅当x2(x2),即x3时取等号,即当f(x)取得最小值时,x3,即a3.答案c5已知t0,则函数y的最小值为_解析t0,yt4242,当且仅当t1时取等号答案2考向一利用基本不等式求最值【例1】(1)已知x0,y0,且2xy1,则的最小值为_;(2)当x0时,则f(x)的最大值为_审题视点 第(1)问把中的“1”代换为“2xy”,展开后利用基本不等式;第(2)问把函数式中分子分母同除“x”,再利用基本不等式解析(1)x0,y0,且2xy1,332.当且仅当时,取等号(2)x0,f(x)1,当且仅当x,即x1时取等号答案(1)32(2)1 利用基本不等式求函数最值时,注意“一正、二定、三相等,和定积最大,积定和最小”常用的方法为:拆、凑、代换、平方【训练1】 (1)已知x1,则f(x)x的最小值为_(2)已知0x,则y2x5x2的最大值为_(3)若x,y(0,)且2x8yxy0,则xy的最小值为_解析(1)x1,f(x)(x1)1213当且仅当x2时取等号(2)y2x5x2x(25x)5x(25x),0x,5x2,25x0,5x(25x)21,y,当且仅当5x25x,即x时,ymax.(3)由2x8yxy0,得2x8yxy,1,xy(xy)101021022 18,当且仅当,即x2y时取等号,又2x8yxy0,x12,y6,当x12,y6时,xy取最小值18.答案(1)3(2)(3)18考向二利用基本不等式证明不等式【例2】已知a0,b0,c0,求证:abc.审题视点 先局部运用基本不等式,再利用不等式的性质相加得到证明a0,b0,c0,2 2c;2 2b;2 2a.以上三式相加得:22(abc),即abc. 利用基本不等式证明不等式是综合法证明不等式的一种情况,证明思路是从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理最后转化为需证问题【训练2】 已知a0,b0,c0,且abc1.求证:9.证明a0,b0,c0,且abc1,3332229,当且仅当abc时,取等号考向三利用基本不等式解决恒成立问题【例3】(2010山东)若对任意x0,a恒成立,则a的取值范围是_审题视点 先求(x0)的最大值,要使得a(x0)恒成立,只要(x0)的最大值小于等于a即可解析若对任意x0,a恒成立,只需求得y的最大值即可,因为x0,所以y,当且仅当x1时取等号,所以a的取值范围是答案 当不等式一边的函数(或代数式)的最值较易求出时,可直接求出这个最值(最值可能含有参数),然后建立关于参数的不等式求解【训练3】 (2011宿州模拟)已知x0,y0,xyx2y,若xym2恒成立,则实数m的最大值是_解析由x0,y0,xyx2y2 ,得xy8,于是由m2xy恒成立,得m28,m10,故m的最大值为10.答案10考向三利用基本不等式解实际问题【例3】某单位建造一间地面面积为12 m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过5 m房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m,且不计房屋背面的费用当侧面的长度为多少时,总造价最低?审题视点 用长度x表示出造价,利用基本不等式求最值即可还应注意定义域0x5;函数取最小值时的x是否在定义域内,若不在定义域内,不能用基本不等式求最值,可以考虑单调性解由题意可得,造价y3(2x150400)5 8009005 800(0x5),则y9005 80090025 80013 000(元),当且仅当x,即x4时取等号故当侧面的长度为4米时,总造价最低 解实际应用题要注意以下几点:(1)设变量时一般要把求最大值或最小值的变量定义为函数;(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值;(3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解【训练3】 (2011广东六校第二次联考)东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元从今年起,工厂投入100万元科技成本并计划以后每年比上一年多投入100万元科技成本预计产量每年递增1万件,每件水晶产品的固定成本g(n)与科技成本的投入次数n的关系是g(n).若水晶产品的销售价格不变,第n次投入后的年利润为f(n)万元(1)求出f(n)的表达式;(2)求从今年算起第几年利润最高?最高利润为多少万元?解(1)第n次投入后,产量为(10n)万件,销售价格为100元,固定成本为元,科技成本投入为100n万元所以,年利润为f(n)(10n)100n(nn*)(2)由(1)知f(n)(10n)100n1 00080520(万元)当且仅当,即n8时,利润最高,最高利润为520万元所以,从今年算起第8年利润最高,最高利润为520万元阅卷报告8忽视基本不等式成立的条件致误【问题诊断】 利用基本不等式求最值是高考的重点,其中使用的条件是“一正、二定、三相等”,在使用时一定要注意这个条件,而有的考生对基本不等式的使用条件理解不透彻,使用时出现多次使用不等式时等号成立的条件相矛盾.,【防范措施】 尽量不要连续两次以上使用基本不等式,若使用两次时应保证两次等号成立的条件同时相等.【示例】已知a0,b0,且ab1,求的最小值错因两次基本不等式成立的条件不一致实录a0,b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物理基础考试试题及答案
- java路由配置方法面试题及答案
- 赌博知识考试题及答案
- 2025年河南省中考语文真题(含答案)
- 石油测井考试题及答案
- 长春燃气考试题及答案
- 函数极限试题及答案
- 货币知识测试题及答案
- 手卫生院感考试试题及答案
- 校园业务知识培训内容课件
- 胶原蛋白培训课件
- 2025至2030中国科研服务行业发展趋势分析与未来投资战略咨询研究报告
- 肿瘤患者的临终关怀及护理
- 2025年6月浙江省高考地理试卷真题(含答案解析)
- GB/T 45785-2025压缩空气站能源绩效评价
- 产权车位转让协议书范本
- CCU护士进修出科汇报
- 解表药白芷讲课件
- T/CUWA 60054-2023饮用水纳滤阻垢剂性能试验方法
- 青少年应急救援技能的培养与提升
- 战略物资储备安全-洞察阐释
评论
0/150
提交评论