全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
11.3 多边形及其内角和 (第1课时) 授课教师:祁锟 单位:曲水县中学教学目标 1了解多边形的有关概念,感悟类比方法的价值 2探索并证明多边形内角和公式,体会化归思想和从具体到抽象的研究问 题方法 3运用多边形内角和公式解决简单问题重点难点 多边形内角和公式的探索与证明过程教学过程 一、情景导入看下页的图片,你能从中找出由一些线段围成的图形吗? 二、多边形及有关概念这些图形有什么特点?由几条线段组成;它们不在同一条直线上;首尾顺次相接这种在平页内,由一些不在同一条直线上的线段首尾顺次相接组成的图形叫做多边形。多边形按组成它的线段的条数分成三角形、四边形、五边形、n边形。这就是说,一个多边形由几条线段组成,就叫做几边形,三角形是最简单的多边形。与三角形类似地,多边形相邻两边组成的角叫做多边形的内角,如图中的A、B、C、D、E。多边形的边与它的邻边的延长线组成的角叫做多边形的外角如图中的1是五边形ABCDE的一个外角。连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线四边形有几条对角线?五边形有几条对角线?画图看看。你能猜想n边形有多少条对角线吗?说说你的想法。n边形有1/2n(n3)条对角线。因为从n边形的一个顶点可以引n3条对角线,n个顶点共引n(n3)条对角线,又由于连接任意两个顶点的两条对角线是相同的,所以,n边形有1/2n(n3)条对角线。三、凸多边形和凹多边形如图,下页的两个多边形有什么不同?在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形。注意:今后我们讨论的多边形指的都是凸多边形四、正多边形的概念我们知道,等边三角形、正方形的各个角都相等,各条边都相等,像这样各个角都相等,各条边都相等的多边形叫做正多边形。下页是正多边形的一些例子。五、多边形的内角和如图,从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度? ABCD可以引一条对角线;它将四边形分成两个三角形;因此,四边形的内角和=ABD的内角和+BDC的内角和=2180=360。类似地,你能知道五边形、六边形 n边形的内角和是多少度吗? 观察下页的图形,填空: 五边形 六边形 从五边形一个顶点出发可以引 对角线,它们将五边形分成 三角形,五边形的内角和等于 ;从六边形一个顶点出发可以引 对角线,它们将六边形分成 三角形,六边形的内角和等于 ;从n边形一个顶点出发,可以引 对角线,它们将n边形分成 三角形,n边形的内角和等于 。n边形的内角和等于(n一2)180从上页的讨论我们知道,求n边形的内角和可以将n边形分成若干个三角形来求。现在以五边形为例,你还有其它的分法吗?分法一 如图1,在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形。五边形的内角和为5180一2180(52)180=540。 图1 图2分法二 如图2,在边AB上取一点O,连OE、OD、OC,则可以(51)个三角形。五边形的内角和为(51)180一180(52)180如果把五边形换成n边形,用同样的方法可以得到n边形内角和(n一2)180例题例1 填空:(1)十边形的内角和为 _ 度ABCD(2)已知一个多边形的内角和为1 080,则它的边数为_例2如果一个四边形的一组对角互补,那么另一组对角有什么关系?解:如图,四边形ABCD 中, A +C =180 A +B +C +D =(4 - 2)180 =360,B +D =360-(A + C) =360- 180 =180 如果四边形的一组对角互补,那么另一组对角也互补 五、课堂练习课本 21页练习1、2. 24页练习1、2、3题。六、课堂小结 1、多边形及有关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流供应链优化与仓储管理效率提升方案
- 碳核查工作考核指标体系构建
- 项目收尾与总结评估报告模板
- 小学教师教学能力提升计划
- 中级碳排放监测员培训计划
- 保姆育婴师工作指南如何制定每日工作安排
- 碳信托项目合作方满意度调查报告
- 企业人才梯队建设与领导力发展计划
- 安全员安全教育培训方案题
- 薪酬福利方案与员工激励机制
- 酒店安全生产的管理制度
- 公会主播停播合同范本
- 金属行业入门知识培训课件
- 一带一路人工智能+数字基础设施建设研究报告
- 校友交流社区创新创业项目商业计划书
- 语言学术研究前沿领域与趋势总结
- 人教PEP版(2024)四年级上册英语单元词汇表
- 后浇带格构柱独立支撑设计要点
- 技术总工岗位认知
- 保安及食堂人员安全培训课件
- 2024版2025秋贵州黔教版综合实践活动二年级上册全册教案教学设计
评论
0/150
提交评论