matlab 中的矩阵分解.doc_第1页
matlab 中的矩阵分解.doc_第2页
matlab 中的矩阵分解.doc_第3页
matlab 中的矩阵分解.doc_第4页
matlab 中的矩阵分解.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

matlab 中的矩阵分解matlab 中的矩阵分解 矩阵分解是指根据一定的原理用某种算法将一个矩阵分解成若干个矩阵的乘积。常见的矩阵分解有LU分解(三角分解)、QR分解(正交变换)、Cholesky分解,以及Schur分解、Hessenberg分解、奇异分解等。 (1) LU分解(三角分解)矩阵的LU分解就是将一个矩阵表示为一个交换下三角矩阵和一个上三角矩阵的乘积形式。线性代数中已经证明,只要方阵A是非奇异(即行列式不等于0)的,LU分解总是可以进行的。MATLAB提供的lu函数用于对矩阵进行LU分解,其调用格式为:L,U=lu(X):产生一个上三角阵U和一个变换形式的下三角阵L(行交换),使之满足X=LU。注意,这里的矩阵X必须是方阵。L,U,P=lu(X):产生一个上三角阵U和一个下三角阵L以及一个置换矩阵P,使之满足PX=LU。当然矩阵X同样必须是方阵。(设P 是一个 mn 的 (0,1) 矩阵,如 mn且 P*P=E,则称 P为一个 mn的置换矩阵。)实现LU分解后,线性方程组Ax=b的解x=U(Lb)或x=U(LPb),这样可以大大提高运算速度。 例7-2 用LU分解求解例7-1中的线性方程组。命令如下:A=2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4;b=13,-9,6,0;L,U=lu(A);x=U(Lb)或采用LU分解的第2种格式,命令如下:L,U ,P=lu(A);x=U(LP*b) (2) QR分解(正交变换)对矩阵X进行QR分解,就是把X分解为一个正交矩阵Q和一个上三角矩阵R的乘积形式。QR分解只能对方阵进行。MATLAB的函数qr可用于对矩阵进行QR分解,其调用格式为:Q,R=qr(X):产生一个一个正交矩阵Q和一个上三角矩阵R,使之满足X=QR。Q,R,E=qr(X):产生一个一个正交矩阵Q、一个上三角矩阵R以及一个置换矩阵E,使之满足XE=QR。实现QR分解后,线性方程组Ax=b的解x=R(Qb)或x=E(R(Qb)。 例7-3 用QR分解求解例7-1中的线性方程组。命令如下:A=2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4;b=13,-9,6,0;Q,R=qr(A);x=R(Qb)或采用QR分解的第2种格式,命令如下:Q,R,E=qr(A);x=E*(R(Qb) (3) Cholesky分解如果矩阵X是对称正定的,则Cholesky分解将矩阵X分解成一个下三角矩阵和上三角矩阵的乘积。设上三角矩阵为R,则下三角矩阵为其转置,即X=RR。MATLAB函数chol(X)用于对矩阵X进行Cholesky分解,其调用格式为:R=chol(X):产生一个上三角阵R,使RR=X。若X为非对称正定,则输出一个出错信息。R,p=chol(X):这个命令格式将不输出出错信息。当X为对称正定的,则p=0,R与上述格式得到的结果相同;否则p为一个正整数。如果X为满秩矩阵,则R为一个阶数为q=p-1的上三角阵,且满足RR=X(1:q,1:q)。实现Cholesky分解后,线性方程组Ax=b变成RRx=b,所以x=R(Rb)。 例7-4 用Cholesky分解求解例7-1中的线性方程组。命令如下:A=2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4;b=13,-9,6,0;R=chol(A)? Error using = cholMatrix must be positive definite命令执行时,出现错误信息,说明A为非正定矩阵。(4) 任意方阵的Schur分解任意一个n阶方阵X可以分解为X=URU,其中U为酉矩阵,R为上三角schur矩阵且其主对角线上的元素为X的特征值。酉矩阵的相关性质: 设有A,B矩阵 (1)若A是酉矩阵,则A的逆矩阵也是酉矩阵 (2)若A,B是酉矩阵,则AB也是酉矩阵 (3)若A是酉矩阵,则|detA|=1(4)A是酉矩阵的充分必要条件是,它的n个列向量是两两正交的单位向量U,R=schur(X)(5) 任意方阵的Hessenberg分解任意一个n阶方阵X可以分解为X=PHP, 其中P为酉矩阵, H的第一子对角线下的元素均为0,即H为Hessenberg矩阵。P,H=hess(X)(6) 任意方阵的特征值分解EVD任意一个n阶方阵X可以分解为XV=VD,其中D为X的特征值对角阵,V为X的特征向量矩阵。V,D=eig(X)V,D=eig(X,Y)计算广义特征值矩阵D和广义特征值向量矩阵V,使得XV=YVD。(7)任意矩阵的奇异值分解SVD任意一个m*n维的矩阵X可以分解为X=USV,U,V均为酉矩阵,S为m*n维的对角矩阵,其对角线元素为X的从大到小排序的非负奇异值。U,V为正交阵,S为对角阵,svd(A)恰好返回S的对角元素,而且就是A的奇异值(定义为:矩阵A*A的特征值的算数平方根)U,S,V=svd(X)(8) 任意矩阵的几何均值分解GMD任意矩阵m*n维的矩阵X可以分解为X=QRP, Q,P均为酉矩阵,R为k*k维的实正线上三角矩阵,其主对角线元素均等于X的所有K个正奇异值的几何均值,k=rank(X)。(PS: 一个n n的实对称矩阵 M 是正定的当且仅当对于所有的非零实系数向量z,都有 zTMz 0。其中zT 表示z的转置。对于复数的情况,定义则为:一个n n的埃尔米特矩阵 M 是正定的当且

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论