《两个向量的数量积》说案.doc_第1页
《两个向量的数量积》说案.doc_第2页
《两个向量的数量积》说案.doc_第3页
《两个向量的数量积》说案.doc_第4页
《两个向量的数量积》说案.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

两个向量的数量积说案两个向量的数量积说案 2008年1月3日13:46 大连教育学院 点击:1144 两个向量的数量积说案教材:人教版普通高中课程标准实验教科书数学B版(选修2-1)尊敬的各位专家、评委:大家上午好!我是来自大连市第三十六中学的数学教师王昕,教龄九年,中学一级教师.今天我说课的题目是两个向量的数量积我将通过教材分析、学情分析、目标设计、方法手段、过程设计和教学评价六个部分,阐述本课的教学设计一、教材分析1教学内容两个向量的数量积是新课标人教版选修2-1第三章第一大节里第三小节的内容,根据教学大纲,本节共1课时,主要内容是空间两个向量的夹角的概念和空间两个向量的数量积的概念、性质、运算率及简单应用2地位与作用空间两个向量的夹角、数量积是高中数学向量的重要内容,也是高考的重要考查内容.从知识的网络结构上看,空间向量夹角、数量积既是平面向量夹角、数量积概念的延续和拓展,又是后续空间向量数量积的计算坐标化和空间向量在立体几何中应用的教学基础,起到承上启下的作用.同时,用向量处理立体几何问题,可使学生克服空间想象力的障碍而顺利解题,为研究立体几何提供了新的思想方法和工具,具有相当大的优越性,而且在丰富学生思维结构的同时,应用数学的能力也得到了锻炼和提高.二、学情分析1知识准备高二年级学生在掌握了平面向量夹角、数量积以及平面向量数量积的性质、运算率的基础上,又学习了空间向量的线性运算及空间向量的基本定理等有关知识,具有了一定的知识储备.但用向量解决立体几何问题时,要将几何问题等价转化为向量问题,这是本小节的一个难点.2能力储备学生经过初中以及高一的数学学习,已具有一定的推理能力,数学思维也逐步向理性层次跃进,逐步形成了辩证思维体系但学生自主探究问题的能力,由特殊到一般的归纳能力普遍还不够理想3学生情况考虑到任课实验班级学生数学基础较好、思维较为活跃的特点,加深了对概念的理解,并对例题的选择进行了适当的调整和延展,为向量在立体几何中的综合应用打好基础根据新课程标准的理念以及对教材、学情的分析,我进行了如下目标设计三、目标设计教学目标【知识与技能】(1)掌握空间向量夹角的概念及表示方法,掌握空间向量数量积的概念、性质、计算方法及运算率;(2)初步掌握空间向量数量积的用途,会用它解决立体几何中的一些简单问题.【过程与方法】经历概念的形成过程、经历用向量方法解决某些简单的几何问题的思维过程,体验数形结合思想的指导作用,体会向量是一种解决几何问题的有利工具,并鼓励学生灵活选择运用向量法解决立体几何问题,使学生亲身体验数学发现和创造的历程.【情感态度价值观】通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯;让学生领略数学严谨、基础、系统、实用的魅力.2教学重点、难点为更好地完成教学目标,本课教学重、难点设置为:【重点】空间两个向量的夹角、数量积的概念、计算方法及其应用【难点】空间两个向量数量积的几何意义以及把立体几何问题转化为向量计算问题.为达到教学目标,突出重点、突破教学难点阐述方法手段:四、方法手段1.教学方法根据教学内容、教学目标和学生的认知水平,本节课主要采取教师启发讲授,学生探究学习的教学方法.教学过程中,根据教材提供的线索,安排适当的教学情境,引导学生独立自主地开展思维活动,并让学生展示相应的数学思维过程,深入探究,并合作交流,创造性地解决问题,最终获得方法,培养能力.2.教学手段教学中使用多媒体投影和计算机来辅助教学目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的理解和认识五、过程设计根据课改的精神,本着“以学生发展为本”的教学理念,结合学生实际,对教学过程作了如下的设计:首先,通过步步设问引导学生掌握教材所要求的基本面:空间向量夹角的概念和空间向量数量积的概念、性质、计算方法及运算率;其次,鉴于向量兼容了代数、几何的特色,有着其独特的魅力和发展前景,为进一步让学生感受“向量法”的优势,安排了可以分别运用“几何法”和“向量法”来处理空间几何问题的例题.同时,为日后解决空间的度量、位置关系问题寻求一种新的方法,进一步拓展了学生的思维渠道.我把教学过程设计为四个阶段:创设情境,引入课题;类比探究,获得新知;回味建构,应用拓展;归纳小结,提高认识.时间安排如下:(一)创设情境,引入课题概念的形成主要依靠对感性材料的抽象概括,只有学生对学习对象有了丰富具体经验以后,才能使学生对学习对象进行主动的、充分的理解,因此在本阶段的教学中,我从分析具体例子出发,而不是从抽象语言入手来引入空间向量的相关概念.引例:已知在正方体ABCD-A1B1C1D1中,AE=EA1,D1F=,如何确定的夹角?如何求?(设计意图:以学生熟悉的正方体做为教学背景,预计学生应联想到平面向量的夹角和数量积,由此类比猜想引入新课,温故知新从而有效调动学生的学习积极性)(二)类比探究,获得新知在本阶段的教学中,为使学生加深对空间向量的夹角和空间向量的数量积概念的本质的认识,我设计了三个环节,引导学生分别完成对空间向量夹角、数量积概念的三次认识,形成并掌握空间向量的夹角和空间向量的数量积概念,以及掌握空间两个向量数量积的性质、计算方法及运算率.1回顾旧知,类比猜想在本环节的教学中,我主要设计了两个问题:问题1:平面向量的夹角和平面向量的数量积的概念?(设计意图:是从学生的已有认知出发,即从学生已具备的平面向量相关知识出发,为类比出空间向量夹角和数量积概念做铺垫,以备完成对空间向量夹角和数量积概念的第一次认识.)问题2:能否根据自己的理解说说什么是空间向量的夹角、数量积?教学中,我引导学生用自己的语言描述空间向量的相关概念.至此,学生对空间向量的夹角和数量积的概念就有了第一次直观、描述性的认识(设计意图:对于概念教学,若学生能用自己的语言来表述概念,则能更好的理解和掌握概念.)2探究原因,理性认识在此环节中,我设计了两个问题,通过对两个问题的研究、交流、讨论,使学生对空间两个向量夹角概念的认识由感性认识上升到理性认识的高度,使学生完成对概念的第二次认识问题1:引例中如何确定的夹角?为什么?预测对于问题1中如何确定的夹角学生的回答主要有两种:(1)取A1B1的中点M连结AM,的夹角即为的夹角;(2)取D1D的中点N连结CN,的夹角即为的夹角.问题2:还有其它平移向量的方法吗?(设计意图:对于问题1中确定两个空间向量的夹角,学生易根据空间向量相等的定义通过平移向量来解决,困难是如何选择平移向量所到的确切位置再通过问题2的讨论,使学生感受到空间向量平移的任意性,从而将对空间向量夹角的描述性认识过渡到理性的高度.)3抽象思维,形成概念本环节在前面研究的基础上,引导学生归纳、抽象出空间两个向量夹角的概念:已知两非零向量,在空间任取一点,作,则叫做向量与的夹角,记作.且规定,显然有.若,则称与互相垂直,记作:;使学生经历从特殊到一般,从具体到抽象的认知过程,完成对概念的第三次认识.在本环节我设计了如下问题:问题1:判断题:在正方体中ABCD-A1B1C1D1中:.向量为共面向量,它们的基线为共面直线(设计意图:通过三个判断题,加深学生对概念理解的同时指出:求向量的夹角注意向量的方向性;两个共线向量的夹角为0或;空间任意两个向量必共面,但是基线不一定共面,进而引出异面直线以及异面直线所成的角的概念.)异面直线的概念和异面直线所成的角:我们把不在任何一个平面内的两条直线叫做异面直线.把异面直线平移到一个平面内,这时两条直线的夹角(锐角或直角)叫做两条异面直线所成的角.并对问题1做变式处理:在正方体中ABCD-A1B1C1D1中:求(1)直线AB与直线C1A1所成的角;(2)直线BD与直线直线C1A1所成的角.(设计意图:通过问题加深学生对概念的理解,指出:求两条异面直线所成的角的步骤;异面直线所成角的取值范围;什么叫两条异面直线互相垂直;两条异面直线成角和向量夹角的区别与联系.)问题2:如何解决引例中?(设计意图:学生们在掌握了空间向量夹角概念的基础上容易把空间向量的数量积用平面向量数量积来定义,从而形成空间两个向量数量积的概念.)已知空间两个向量,总可以把它们平移到一个平面内,把平面向量数量积叫做两个空间向量的数量积(或内积),记作,即几何意义:已知向量和轴,是上与同方向的单位向量,作点在上的射影,作点在上的射影,则叫做向量在轴上或在上的正射影;可以证明的长度(设计意图:主要是考虑到任课实验班级学生数学基础较好、思维较为活跃的特点,加深对概念的理解.)问题3:空间向量数量积的性质?空间向量数量积满足的运算率?(设计意图:学生们在掌握了空间向量的数量积概念的基础上,会自主探究得到空间向量数量积的性质及其满足的运算率与平面向量数量积的性质及其满足的运算率相同的结论.)性质:(1);(2);(3);(4).运算率:(1);(2);(3)(三)回味建构,应用拓展本阶段的教学,主要是通过对教材例题的讲解并延展,引导学生思考交流、分析探究、归纳反思,体会向量在立体几何中的作用.例1.已知正方体ABCD-A1B1C1E1的棱长为1,设求:(1);(2);(3);(4).(设计意图:使学生们通过空间向量数量积的性质及其运算率掌握向量数量积的计算方法,同时为例题2的解决打好基础.)例2.已知平面平面,=l,点A,B在内,并且它们在l上的正射影分别为A,B;点C,D在内,并且它们在l上的正射影分别为C,D,求证:.证明过程的教学分为三个环节:难点突破、详细板书、归纳方法.1难点突破对于该题的证明,问题主要集中在两个方面:一方面部分学生不知道该如何处理,不敢动笔;另一方面部分学生处理方法不科学,陷入困境.困难出现在如果直接使用空间向量数量积的概念证明等式成立,向量的夹角不易求,同时向量模的关系不易找.针对这两方面的问题,教学中,我组织学生讨论:(1)如何把已知的几何条件转化为向量表示?(2)引导学生回顾例1,并考虑一些未知的向量能否用基向量或其他已知向量表示?(3)如何对已经表示出来的向量进行运算,才能获得需要的结论?2详细板书在上面分析的基础上,我对例2证明过程进行规范、完整的板书,引导学生注意证明过程的规范性和严谨性,帮助学生养成良好的学习习惯.证明:AB和CD分别为AB和CD在l上的正射影,且,AA/BB,且AA和BB分别和CC,CD,DD垂直;CC/DD,且CC和DD分别和AA,AB,BB垂直;=3归纳方法在解决三个问题以及板书的基础上,我引导学生体会、归纳解决问题的方法.“传统解法”需作辅助线,有时不易作出;而使用“向量解法”,程序化强,便于操作.(设计意图:目的在于说明用向量解决立体几何中一些典型问题的基本思考方法,同时为后续借助向量坐标运算法则及公式解决立体几何问题做了一定的铺垫.)为了巩固“向量解法”,形成并提高解题能力,我安排了:例3已知长方体ABCD-ABCD,AB=AA=2,AD=4,E为侧面AB的中心,F为AD的中点,计算下列数量积:(设计意图:巩固方法,鼓励学生选择运用向量方法解决立体几何问题,形成并提高解题能力;通过学生板演、学生讲解进行随堂反馈.)为了更深刻感受“向量解法”的优越性,我安排了:例4在空间四边形OABC中,OA=8,AB=6,AC=4,BC=5,AOC=450,OAB=600,求OA与BC夹角的余弦值.解:,所以,与的夹角的余弦值为(设计意图:再次让学生感受到单纯用立体几何知识解答较繁,而利用向量法去思考,思路清晰,目标明确,从而大大降低了求解的难度,同时亦可激发他们不断求知、不断探索的欲望.)(四)归纳小结,提高认识由学生自主归纳、总结本节课所学习的主要内容,教师加以补充说明1课堂小结在知识层面上,总结空间向量夹角和数量积的概念;利用空间向量性质、运算率计算和证明几何问题的方法与步骤.在方法层面上,引导学生回顾知识探究过程中用到的思想方法和思维方法,如数形结合,等价转化,类比等,强调用“向量法”解决立体几何问题的优势,同时引导学生对学习过程作必要的反思,为后续的学习做好铺垫.(设计意图:通过学生自主归纳、总结,对本节所学的知识系统化、条理化,可进一步巩固知识,明确方法)2布置作业层次一:教材第88页,练习A1,2,练习B1,2,3;层次二:练习册41页;层次三:补充题:在边长为2的正方体中,AC交B0于E,G为CC1的中点,求:(1)异面直线A1E与BC1所成角;(2)异面直线A1E与BG所成角.(设计意图:实施分层设置,安排基本练习题、巩固理解题和深化探究题三层使学生在完成教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣.补充题同时也为下节课向量坐标化引入埋下伏笔,促进学生自主发展、合作探究)板书设计(设计意图:本课内容一览无遗,且具有启发性,突出重点.)六、教学评价评价方式的转变是新课程改革的一大亮点,课标指出:相对于结果,过程更能反映每个学生的发展变化,体现出学生成长的历程.因此,数学学习的评价既要重视结果,也要重视过程.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论