




已阅读5页,还剩43页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省13市2014年中考数学试题分类解析汇编(20专题)专题13:动态几何问题江苏泰州锦元数学工作室 编辑1. (2014年江苏徐州3分)将函数y=3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为【 】A. B. C. D.2. (2014年江苏宿迁3分)若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为【 】A. B. C. D. 3. (2014年江苏宿迁3分)如图,在直角梯形ABCD中,ADBC,ABC=90,AB=8,AD=3,BC=4,点P为AB边上一动点,若PAD与PBC是相似三角形,则满足条件的点P的个数是【 】A. 1个 B. 2个 C. 3个 D. 4个4. (2014年江苏无锡3分)在直角坐标系中,一直线a向下平移3个单位后所得直线b经过点A(0,3),将直线b绕点A顺时针旋转60后所得直线经过点B(,0),则直线a的函数关系式为【 】A. B. C. D. 5. (2014年江苏苏州3分)如图,AOB为等腰三角形,顶点A的坐标为(2,),底边OB在x轴上将AOB绕点B按顺时针方向旋转一定角度后得AOB,点A的对应点A在x轴上,则点O的坐标为【 】A(,) B(,) C(,) D(,4)【答案】C.【考点】1.坐标与图形的旋转变化;2.勾股定理;3. 等腰三角形的性质;4.三角形面积公式【分析】利用等面积法求O的纵坐标,再利用勾股定理或三角函数求其横坐标:6. (2014年江苏南通3分)如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是【 】A. B. C. D. 在RtADO中,OAD=30,OD=r,. 由题意,DOE=120,得,圆形纸片不能接触到的部分的面积为故选C7. (2014年江苏常州2分)在平面直角坐标系中,直线经过点A(3,0),点B(0,),点P的坐标为(1,0),与轴相切于点O,若将P沿轴向左平移,平移后得到(点P的对应点为点P),当P与直线相交时,横坐标为整数的点P共有【 】A. 1个 B. 2个 C. 3个 D. 4个【答案】C【考点】1.面动平移问题;2.直线与圆的位置关系;3.一次函数的性质;4.勾股定理;5.含30度角直角三角形的性1. (2014年江苏镇江2分)如图,将OAB绕着点O逆时针连续旋转两次得到OAB,每次旋转的角度都是50. 若BOA=120,则AOB= 【答案】20.【考点】旋转的性质【分析】根据旋转的性质得AOA=AOA=50,然后利用AOB=BOA-BOB进行计算即可:AOA=AOA=50,BOB=100.BOA=120,AOB=BOA-BOB=120-100=20.2. (2014年江苏盐城3分)如图,在矩形ABCD中,AB=,AD=1,把该矩形绕点A顺时针旋转度得矩形ABCD,点C落在AB的延长线上,则图中阴影部分的面积是 3. (2014年江苏徐州3分)在平面直角坐标系中,将点A(4,2)绕原点逆时针方向旋转90后,其对应点A的坐标为 【答案】(2,4)【考点】坐标与图形的旋转变化【分析】如答图,A的坐标为(2,4)4. (2014年江苏徐州3分)如图,在正方形ABCD中,点P沿边DA从点D开始向点A以1cm/s的速度移动;同时,点Q沿边AB、BC从点A开始向点C以2cm/s的速度移动当点P移动到点A时,P、Q同时停止移动设点P出发xs时,PAQ的面积为ycm2,y与x的函数图象如图,则线段EF所在的直线对应的函数关系式为 5. (2014年江苏宿迁3分)如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是 【答案】.【考点】1.单动点问题;2.轴对称的应用(最短路线问题);3.正方形的性质;4.勾股定理【分析】如答图,连接AE,AP,点C关于BD的对称点为点A,PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值.正方形ABCD的边长为2,E是BC边的中点,BE=1.AE=.PE+PC的最小值是.6. (2014年江苏无锡2分)如图,已知点P是半径为1的A上一点,延长AP到C,使PC=AP,以AC为对角线作ABCD若AB=,则ABCD面积的最大值为 7. (2014年江苏无锡2分)如图,菱形ABCD中,A=60,AB=3,A、B的半径分别为2和1,P、E、F分别是边CD、A和B上的动点,则PE+PF的最小值是 【答案】3【考点】1.多动点问题;2.菱形的性质;3.相切两圆的性质;4.等边三角形的判定和性质【分析】由题意可得出:当P与D重合时,E点在AD上,F在BD上,此时PE+PF最小,如答图,连接BD,菱形ABCD中,A=60,AB=AD. ABD是等边三角形. BD=AB=AD=3.A、B的半径分别为2和1,PE=1,DF=2.PE+PF的最小值是38. (2014年江苏泰州3分)将一次函数y=3x1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为 9. (2014年江苏淮安3分)将二次函数y=2x21的图象沿y轴向上平移2个单位,所得图象对应的函数表达式为 1. (2014年江苏镇江9分)如图1,在平面直角坐标系xOy中,点M为抛物线的顶点,过点(0,4)作x轴的平行线,交抛物线于点P、Q(点P在Q的左侧),PQ=4(1)求抛物线的函数关系式,并写出点P的坐标;(2)小丽发现:将抛物线绕着点P旋转180,所得新抛物线的顶点恰为坐标原点O,你认为正确吗?请说明理由;(3)如图2,已知点A(1,0),以PA为边作矩形PABC(点P、A、B、C按顺时针的方向排列),写出C点的坐标:C( , )(坐标用含有t的代数式表示);若点C在题(2)中旋转后的新抛物线上,求t的值2. (2014年江苏扬州10分)如图,已知中,先把绕点B顺时针旋转至后,再把沿射线AB平移至,ED、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.3. (2014年江苏扬州12分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(1)如图1,已知折痕与边BC交于点O,连接AP,OP,OA. 求证:OCPPDA; 若OCP与PDA的面积比为1:4,求边AB的长;(2)若图1中的点P恰巧是CD边的中点,求OAB的度数;(3)如图2,在(1)条件下,擦去折痕AO、线段OP,连结BP. 动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作MEBP于点E. 试问当点M,N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求线段EF的长度.由(1)得AB=10,AD=8,DP=6. PC=4. .4. (2014年江苏盐城12分)【问题情境】张老师给爱好学习的小军和小俊提出这样一个问题:如图1,在ABC中,AB=AC,点P为边BC上的任一点,过点P作PDAB,PEAC,垂足分别为D、E,过点C作CFAB,垂足为F求证:PD+PE=CF小军的证明思路是:如图2,连接AP,由ABP与ACP面积之和等于ABC的面积可以证得:PD+PE=CF小俊的证明思路是:如图2,过点P作PGCF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF【变式探究】如图3,当点P在BC延长线上时,其余条件不变,求证:PDPE=CF;请运用上述解答中所积累的经验和方法完成下列两题:【结论运用】如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C处,点P为折痕EF上的任一点,过点P作PGBE、PHBC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;【迁移拓展】图5是一个航模的截面示意图在四边形ABCD中,E为AB边上的一点,EDAD,ECCB,垂足分别为D、C,且ADCE=DEBC,AB=dm,AD=3dm,BD=dmM、N分别为AE、BE的中点,连接DM、CN,求DEM与CEN的周长之和PG+PH的值为4【考点】1.四边形综合题;2.折叠对称的性质;3.等腰三角形的判定和性质;4.直角三角形斜边上的中线性质;5.勾股定理;6.矩形的判定和性质;7.相似三角形的判定和性质;8.方程思想的应用【分析】【问题情境】如下图,按照小军、小俊的证明思路即可解决问题【变式探究】如答图1,借鉴小军、小俊的证明思路即可解决问题【结论运用】易证BE=BF,如答图2,过点E作EQBF,垂足为Q,利用问题情境中的结论可得PG+PH=EQ,易证EQ=DC,BF=DF,只需求出BF即可【迁移拓展】由条件ADCE=DEBC联想到三角形相似,从而得到A=ABC,进而补全等腰三角形,DEM与CEN的周长之和就可转化为AB+BH,而BH是ADB的边AD上的高,只需利用勾股定理建立方程,求出DH,再求出BH,就可解决问题5. (2014年江苏徐州10分)如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EGEF,EG与圆O相交于点G,连接CG(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;求点G移动路线的长当点F在点D(F)处时,直径FGBD,如答图2所示,此时O与射线BD相切,CF=CD=3当CFBD时,CF最小,此时点F到达F,如答图3所示SBCD=BCCD=BDCF43=5CFCF=CF4S矩形ABCD=,即矩形EFCG的面积最大值为12,最小值为6. (2014年江苏宿迁8分)如图,在直角梯形ABCD中,ABDC,ABC=90,AB=8cmBC=4cm,CD=5cm动点P从点B开始沿折线BCCDDA以1cm/s的速度运动到点A设点P运动的时间为t(s),PAB面积为S(cm2)(1)当t=2时,求S的值;(2)当点P在边DA上运动时,求S关于t的函数表达式;(3)当S=12时,求t的值7. (2014年江苏宿迁附加10分)如图,已知BAD和BCE均为等腰直角三角形,BAD=BCE=90,点M为DE的中点,过点E与AD平行的直线交射线AM于点N(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:ACN为等腰直角三角形;(3)将图1中BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由A、B、N三点在同一条直线上,ABC+CBN=180ABC=NECADMNEM(已证),AD=NEAD=AB,AB=NE在ABC和NEC中,ABCNEC(SAS)AC=NC,ACB=NCEACN=BCE=90ACN为等腰直角三角形8. (2014年江苏宿迁附加10分)如图,已知抛物线y=ax2+bx+c(a0,c0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D(1)如图1,已知点A,B,C的坐标分别为(2,0),(8,0),(0,4);求此抛物线的表达式与点D的坐标;若点M为抛物线上的一动点,且位于第四象限,求BDM面积的最大值;(2)如图2,若a=1,求证:无论b,c取何值,点D均为顶点,求出该定点坐标【答案】解:(1)抛物线y=ax2+bx+c过点A(2,0),B(8,0), B(8,0),D(0,4),解得.直线BD解析式为:设M(x,),如答图2,过点M作MEy轴,交BD于点E,则E(x,)ME=SBDM=SMED+SMEB=ME(xExD)+ME(xBxD)=ME(xBxD)=4ME.SBDM=当x=2时,BDM的面积有最大值为36.(2)证明:如答图3,连接AD、BC由圆周角定理得:ADO=CBO,DAO=BCO,AODCOB.设A(x1,0),B(x2,0),已知抛物线y=x2+bx+c(c0),OC=c,x1x2=C.无论b,c取何值,点D均为定点,该定点坐标D(0,1)9. (2014年江苏无锡10分)如图1,已知点A(2,0),B(0,4),AOB的平分线交AB于C,一动点P从O点出发,以每秒2个单位长度的速度,沿y轴向点B作匀速运动,过点P且平行于AB的直线交x轴于Q,作P、Q关于直线OC的对称点M、N设P运动的时间为t(0t2)秒(1)求C点的坐标,并直接写出点M、N的坐标(用含t的代数式表示);(2)设MNC与OAB重叠部分的面积为S试求S关于t的函数关系式;在图2的直角坐标系中,画出S关于t的函数图象,并回答:S是否有最大值?若有,写出S的最大值;若没有,请说明理由联立与y=2x+4,求得点D的横坐标为SCDN=SBDNSBCN=10. (2014年江苏苏州9分)如图,已知l1l2,O与l1,l2都相切,O的半径为2cm矩形ABCD的边AD,AB分别与l1,l2重合,AB4 cm,AD4cm若O与矩形ABCD沿l1同时向右移动,O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图,连接OA,AC,则OAC的度数为 ;(2)如图,两个图形移动一段时间后,O到达O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm)当d2时,求t的取值范围(解答时可以利用备用图画出相关示意图) (2)连接O1与切点E,则O1E=2,O1El1,利用O1EA1D1C1E1,求A1E=,根据2+O1O+A1E=AA1,可求t,进而求得圆心移动的距离3t=.(3)圆心O到对角线AC的距离d2,即dr.说明O与AC相交,所以出找两个临界点的t值,即O与AC相切. 运动中存在两个相切的位置.分别求两个相切时t的值,即可得出dr时,t的取值11. (2014年江苏南通13分)如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD上一动点,AM=a(a为大于0的常数),直线EM与直线CD交于点F,过点M作MGEM,交直线BC于G(1)若M为边AD中点,求证:EFG是等腰三角形;(2)若点G与点C重合,求线段MG的长;(3)请用含a的代数式表示EFG的面积S,并指出S的最小整数值当点M在AD的延长线上时,如图3,过点M作MNBC,交BC延长线于点N,AB=3,AD=4,AE=1,AM=a,MD=a-4.DCAB,MAEMDF.,即.12. (2014年江苏南京8分)如图,在RtABC中,ACB=90,AC=4 cm ,BC=3 cm,O为ABC的内切圆.(1)求O的半径;(2)点P从点B沿边BA向点A以点1cm/s 的速度匀速运动,以点P为圆心,PB长为半径作圆. 设点P运动的时间为 t s. 若P与O相切,求t的值.【答案】解:(1)如答图1,设O与AB,BC,CA的切点分别为D,E,F,连接OD,OE,OF,则AD=AF,BD=BE,CE=CF.在RtOPH中,由勾股定理,得,解得.如图,当P与O内切时,连接OP,则OP=. 点O作OMPG于点M,MGE=OEG=OMG=90,四边形OEGM是矩形.13. (2014年江苏连云港10分)在一次科技活动中,小明进行了模拟雷达雪描实验.如图,表盘是ABC,其中AB=AC,BAC=120,在点A处有一束红外光线AP,从AB开始,绕点A逆时针匀速旋转,每秒钟旋转15,到达AC后立即以相同的旋转速度返回A、B,到达后立即重复上述旋转过程.小明通过实验发现,光线从AB处开始旋转计时,旋转1秒, 时光线AP交BC于点M,BM的长为()cm.(1)求AB的长;(2)从AB处旋转开始计时,若旋转6秒,此时AP与BC边交点在什么位置?若旋转2014秒,此时AP与BC边交点在什么位置?并说明理由.【答案】解:(1)如答图1,过A点作ADBC,垂足为DBAC=120,AB=AC,ABC=C=30令AB=2tcm在RtABD中,AD=AB=t,BD=AB=在RtAMD中,AMD=ABC+BAM=45,MD=AD=t,解得t=20AB=220=4014. (2014年江苏连云港10分)为了考察冰川融化的状况,一支科考队在某冰川上设一定一个以大本营O为圆心,半径为4km 圆形考察区域,线段P1、P2是冰川的部分边界线(不考虑其它边界),当冰川融化时,边界线沿着与其垂直的方向朝考察区域平行移动. 若经过n年,冰川的边界线P1P2移动的距离为s(km),并且s与n(n为正整数)的关系是. 以O为原点,建立如图所示的平面直角坐标系,其中P1、P2的坐标分别是.(1)求线段P1P2所在的直线对应的函数关系式;(2)求冰川的边界线移动到考察区域所需要的最短时间.15. (2014年江苏连云港14分)某数学兴趣小组对线段上的动点问题进行探究,已知AB=8.问题思考:如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC与正方形PBFE.(1)在点P运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值.(2)分别连接AD、DF、AF,AF交DP于点A,当点P运动时,在APK、ADK、DFK中,是否存在两个面积始终相等的三角形?请说明理由.问题拓展:(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿ABCD的线路,向D点运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长.(4)如图(3),在“问题思考”中,若点M、N是线段AB上的两点,且AM=BM=1,点G、H分别是边CD、EF的中点.请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值.(4)点O所经过的路径长为3,OM+OB的最小值为.16. (2014年江苏淮安14分)如图1,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,PQ两点同时运动,相遇时停止在运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQR设运动时间为t秒(1)当t= 时,PQR的边QR经过点B;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工装设计合同范本5篇
- 瑞丽风情课件
- 阜阳改造工程方案公示(3篇)
- 理想立志课件
- 农业灌溉智能化系统在农田土壤水分监测中的应用研究报告
- 广西百菲乳业股份有限公司年产90000吨水牛奶制品生产线扩建项目(非辐射类)环境影响报告表
- 安全教育规程培训心得课件
- 基于核心素养培育的整本书阅读教学与实践
- 狼牙山五壮士课件
- 狐狸分奶酪课件
- 2025年全国中小学校党组织书记网络培训示范班在线考试题库及答案
- 假性软骨发育不全综合征介绍演示培训课件
- 他们创造了数学:50位著名数学家的故事
- 财务管理-企业筹资方式
- 07K103-2 防排烟系统设备及附件选用及安装
- (完整)消化性溃疡PPT课件ppt
- (完整word版)A3试卷模板
- 疫苗针对性疾病暴发疫情处置课件
- 《胆囊癌诊断和治疗指南》(2023年版)解读
- GB/T 9573-2013橡胶和塑料软管及软管组合件软管尺寸和软管组合件长度测量方法
- GB/T 13173-2021表面活性剂洗涤剂试验方法
评论
0/150
提交评论