数学物理方法讲义七.pdf_第1页
数学物理方法讲义七.pdf_第2页
数学物理方法讲义七.pdf_第3页
数学物理方法讲义七.pdf_第4页
数学物理方法讲义七.pdf_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 lC 8 1 3 1 1 lC 3 1 2 K 4 1 3 x 5 5 1 4 7 1 5 X 8 1 6 n 8 2 9D 9 2 1 lC K 9 2 2 x 5 10 2 3 12 2 4 X 12 2 5 n 12 3 g g 13 3 1 g gz 13 3 2 g m 16 3 3 x J 18 3 4 gz 20 4 21 5 4 IX 24 5 1 25 5 2 X 27 c 1992 2011 nX S n d H N 28 5 4Poisson n 30 6 5 532 6 1 5 32 6 2 5 34 SK36 1 3 m ATP g k keZ N 3 gC L m 5 u U U aq g k k 5 k 4 K lC u3 ye gd u x t K 2u t2 a2 2u x2 0 0 x 0 1a u x 0 0 u x l 0 t 0 1b u t 0 x u t t 0 x 0 x l 1c x x O u 5 C y3 e A u x t X x T t 2 1a X00 x X x T 00 t a2T t 0 L g gC t m x A x t P u T 00 t a2T t 0 3 X00 x X x 0 4 1 4 2 1b 1c O X 0 T t X l T t 0 5 X x T 0 x X x T 0 0 x 6 kw 6 U k U 6 x x X x l x x U g XJ x x X x K7 v 4 4 U n e 0 e 1b u 1c 2 K k X x 4 X 5 g N L a X 0 c0 X0 0 c15 y3 N 7 3 e T 3 4 X A S 4 X 3 lC gC x t N K I 3 L J 4 k v 7 T r 4 7 3e X00 x X x 0 8a X 0 0 X l 0 8b K A k Nk K 3 T eigenvalue A T eigenfunction 3 o K J L N K un k e K 8 1 XJ 0 K 8a X x Cx D C D 8b C D 0 l X x 0 T 0 2 XJ 0 K 8a X x C cosh x Dsinh x 1 5 C D 8b d X 0 0 C 0 2d X l 0 Dsinh l 0 l 0 sinh l 6 0 D 0 u X x 0 T 0 2 0 K 8a X x C cos x Dsin x C D 8b d X 0 0 C 0 2d X l 0 Dsin l 0 T 7L sin l 0 9 XdK D 9 N n n l n N 5 0 u n n l 2 Xn x sin n l x n N 10 D 1 n 3 Tn t un x t Xn x Tn t Xn x Tn t D Tn t 3 w n x 5 3UY c k0 x Xn x sin n x l n 1 5 u 7 k T x3 m 0 l Xm x Xn x Z l 0 Xm x Xn x dx Z l 0 sin m l xsin n l xdx 0 m 6 n 11 p Xm x Xn x L Xm x Xn x S d 1 Xm x Xn x N N d O y m e z n sin m l xsin n l x 1 2 cos m n l x cos m n l x g y T x3 m 0 l f x 3 m 0 l k 5 k Y Y 5 8 d K m f x X n 1 ansin n l x x 0 l 12 mX an 2 l Z l 0 f x sin n l xdx n N 13 1 6 51 3 x K e X 3 n m A i j k n 5 m e k i j K 2 f x x k m 3 U u8 x kaq 3 x m 12 cJe N mX 13 12 I n k sin n x l x l 0 l Z l 0 f x sin n l xdx Z l 0 X k 1 aksin k l xsin n l xdx X k 1 ak Z l 0 sin k l xsin n l xdx A U d 5 x 5 m k k n T kXn x k2 Xn x Xn x Z l 0 sin2 n l xdx l 2 14 dd 13 11 14 Xm x Xn x Z l 0 sin m l xsin n l xdx l 2 mn m n N 15 mn 1 m n 0 m 6 n 16 Kronecker AT G K u Sturm Liouville a K x XJ E K 5 J d O y v y u 5 y J y u 3 0 l f x r l l 2 2l P f x 3 0 l f x f x 3 f x m e Fourier f x b0 X n 1 bncos n l x ansin n l x x 17 mX b0 1 2l Z l l f x dx bn 1 l Z l l f x cos n l xdx an 1 l Z l l f x sin n l xdx n N 18 1 7 du f x l l b0 0 bn 0 n N u m z f x X n 1 ansin n l x x 19 X an L an 2 l Z l 0 f x sin n l xdx 2 l Z l 0 f x sin n l xdx n N 20 x 0 l 19 z 12 X 20 13 K w m 12 Fourier X u K x n du 5 5 5 m 2 Fourier Ud n Fourier G n Fourier A 3 Q d x 5 12 un Fourier 5 w H g o 10 3 T 00 n t n a l 2 Tn t 0 21 Tn t Ancos n a l t Bnsin n a l t 22 An Bn u X v 1a 1b A un x t Xn x Tn t Ancos n a l t Bnsin n a l t sin n l x n N 23 u v 1c x x sin n x l y3 5 1a 1b g A U E v u e u x t X n 1 un x t X n 1 Ancos n a l t Bnsin n a l t sin n l x 24 Lu3 F L An Bn 1c v 5 v K 1 k 51 24 k lC 2 AT v N v v v XJ k UC o I l m 5 k 1 8 U v L J An Bn we 3 J A U E v p S b 3 C 8 An Bn d x x we 8 x x 5 N 2 8 b k X X 24 1c X n 1 Ansin n l x x X n 1 Bn n a l sin n l x x 25 y3 K An Bn U dc x sin n x l n 1 5 L 5 x x k 5 K k Y 12 13 N An 2 l Z l 0 x sin n l xdx Bn 2 n a Z l 0 x sin n l xdx n N 26 x x N O X 24 K 1 Y du u A 2 k lC x t l z 24 X A U T lC Fourier 3 18 V k Fourier S 24 x u Fourier d 24 z 7 e T q 7 A 2 7 u 5 lC L 1 g U P AT 24 A u vk AT e K 1 gC L 5 J 3 e 2 K U 9D Tn t k a k E L e SN w f gC J 5 2 SK aq K L S S 2 aq SN S 8 n d 24 w u X U z e un x t Ancos n a l t Bnsin n a l t sin n l x Cnsinknxcos nt n 27 2 9D 9 kn n l n kna Cn pA 2 n B2n n arctan Bn An 28 27 L 7 u n u 3 e K n uX 5 u Cn nK k n 1 1 a l du n n 1 n 1 n g 7 27 k node v knx n x l m x m n l m N 29 n g k n 1 vk J antinode du m7k J n g k n J u g 5U SK l 5 3 FUs e gd Fe v0 2 9D 9D 1 K lC K 9 9D K u x t K u t a2 2u x2 0 0 x 0 30a u x x 0 0 u x x l 0 t 0 30b u t 0 x 0 x l 30c x 5 C y3 e A u x t X x T t 31 30a 30b 1 T 0 t a2T t 0 32 2 9D 10 K X00 x X x 0 33a X0 0 0 X0 l 0 33b 3 lC e k K 33 1 XJ 0 K 33a X x C cosh x Dsinh x C D 33b D 0 C sinh l 0 0 l 0 C D 0 u X x 0 T K O XJ x 3 XJ 0 2 0 K 33a X x C cos x Dsin x C D 33b d X0 0 0 D 0 2d X0 l 0 C sin l 0 T 7L sin l 0 XdK C N n n l n N u n n l 2 Xn x cos n l x n N 35 C 1 XJ3 n 0 K 34 J r k n n l 2 Xn x cos n l x n N 36 5 3 n 0 n 6 0 I m x 5 1 aq k x Xn x cos n x l n 0 5 k T x3 m 0 l Xm x Xn x Z l 0 cos m l xcos n l xdx 0 m n N m 6 n 37a 2 9D 11 X0 x Xn x Z l 0 cos n l xdx 0 n N 37b d O y m e z n cos m l xcos n l x 1 2 cos m n l x cos m n l x g T x3 m 0 l f x 3 m 0 l k 5 x k K m f x X n 0 ancos n l x a0 X n 1 ancos n l x x 0 l 38 mX a0 1 l Z l 0 f x dx an 2 l Z l 0 f x cos n l xdx n N 39 5 a0 an n N L 3 an L n 0 U a0 3 38 L a0 5 rN 3 x m 38 cJe N mX 39 38 c L I n k cos n x l x l 0 l Z l 0 f x cos n l xdx X k 0 ak Z l 0 cos k l xcos n l xdx n N 5 x 5 m k k n T kXn x k2 Xn x Xn x Z l 0 cos2 n l xdx l n 0 l 2 n 6 0 40 dd 39 u 3 0 l f x r l l 2 2l P f x 3 0 l f x f x f x m e Fourier f x a0 X n 1 ancos n l x bnsin n l x x 41 mX a0 1 2l Z l l f x dx an 1 l Z l l f x cos n l xdx bn 1 l Z l l f x sin n l xdx n N 42 du f x l l bn 0 n N u m z f x a0 X n 1 ancos n l x x 43 2 9D 12 X L a0 1 l Z l 0 f x dx 1 l Z l 0 f x dx an 2 l Z l 0 f x cos n l xdx 2 l Z l 0 f x cos n l xdx n N 44 x 0 l 43 z 38 X 44 39 K m 38 Fourier X n 36 32 N T0 t A0 Tn t Anexp na2t Anexp n a l 2 t n N 45 A0 An u X v 30a 30b A u0 x t X0 x T0 t A0 un x t Xn x Tn t Anexp na2t cos n l x n N 46 A U v u x t X n 0 un x t A0 X n 1 Anexp na2t cos n l x 47 L 9 A0 An v 30c o X 47 30c A0 X n 1 Ancos n l x x 48 dc x cos n x l n 0 x k 5 38 39 N A0 1 l Z l 0 x dx An 2 l Z l 0 x cos n l xdx n N 49 x N O X 47 K 30 Y n 5 47 1 k P f exp na2t K A Ny L 5 1 K 1 a g Ak 3 g g 13 t N u x t A0 1 l Z l 0 x dx 50 5 3 47 XJ r A0 5 0 0 K N u x t 0 J 49 A0 L An n N r A0 5k 50 n L m u 9 9D K cJ 9 K k1 a g vk9 u 9 U3S 6 d9D Fourier 9 o l p 6 7 u 2dU U SK 9 x 0 l y 0 d 9 f x y u0 x l u0 t 4 3 g g c 0 lC u g g N S K k g g K w 7 XJ K k g g U lC m 5 XJ g K g kAT gz XJ 5 g gz E g 5 g gz C g gz m 5 u g K g K k m duz U 0 AT3 k 2 X J U K v g gz u K x 0 x l Asin t A u u K 2u t2 a2 2u x2 0 0 x 0 51a u x 0 0 u x l Asin t t 0 51b u t 0 0 u t t 0 0 0 x l 51c gz g E U u0 x t u x t v u x t v x t u0 x t 52 3 g g 14 v x t w v g v u u x t u K u0 x t x l Asin t 53 K v x t v K 2v t2 a2 2v x2 2A l xsin t 0 x 0 54a v x 0 0 v x l 0 t 0 54b v t 0 0 v t t 0 A l x 0 x l 54c gz C g L e 0 g K XJU 3 gz g5 u K u0 x t Asin x a sin l a sin t 55 N w v 51b v 51a 5 v x t K k g 2v t2 a2 2v x2 0 0 x 0 56a v x 0 0 v x l 0 t 0 56b v t 0 0 v t t 0 Asin x a sin l a 0 x l 56c 1 L K A 24 r 3e v x t X n 1 Ancos n a l t Bnsin n a l t sin n l x 57 56c X n 1 Ansin n l x 0 X n 1 Bn n a l sin n l x Asin x a sin l a 58 N An 0 Bn 2 A la n 1 a 2 n l 2 59 u x t A sin l a sin tsin x a 2 A la X n 1 n 1 a 2 n l 2 sin n a l tsin n l x 60 3 g g 15 N w XJ n a l m uu u d 60 k 1C S 55 U 1 C L 53 vk K p 0 e 55 L k J d 51b e k 5 k u0 x t F x sin t 61 v 51a 51b F00 x 2 a2 F x 0 62a F 0 0 F l A 62b 62a F x C cos x a Dsin x a 62b C 0 D A sin l a Xd F x Asin x a sin l a 61 55 k g 9D K X J 52 u0 x t 3 gz g5 XJ 5 g gz XJ 5 g AT U gz g K 3 e u0 x t v XJT E o v x t K kE 5 O v x t k X u0 x t gz 0 X E u0 x t XJ J u0 x t K y 5 S y J AT J U u0 x t 2 f u 1 K 2u t2 a2 2u x2 f x t 0 x 0 63a u x 0 t u x l t t 0 63b u t 0 x u t t 0 x 0 x l 63c t t x x gz u0 x t t x l t t 64 3 g g 16 K v x t K 2v t2 a2 2v x2 f x t 00 t x l 00 t 00 t 65a v x 0 0 v x l 0 65b v t 0 x 0 0 0 l x v t t 0 x 0 0 0 0 0 0 l x 65c p gz u K 5vk E J u0 x t t x2 l2 t t 66 5 gz w X 64 5 g m b gz Ku 1 K 2u t2 a2 2u x2 f x t 0 x 0 67a u x 0 0 u x l 0 t 0 67b u t 0 x u t t 0 x 0 x l 67c 65 k w u K y3 K u x t x t C XJ t o x m x 5 Xc y x sin n x l n 1 cos n x l n 0 t Cz mX A 3 t A T m L mX t u x t X n 1 Tn t sin n l x 68 u x t X n 0 Tn t cos n l x 69 m g L J x Tn t m v K 67 Xd K m 69 w v 67b v m U k J y3 AT A g K x5 m u x t XJ A g K G A Tk ATk f x t 0 1 7 X I x x 2 aqu 68 m u8c K 3 g g 17 m 68 T J v 67b y3AT 67a 67c x Tn t AT v d r m A m f x t X n 1 fn t sin n l x fn t 2 l Z l 0 f x t sin n l xdx n N 70a x X n 1 nsin n l x n 2 l Z l 0 x sin n l xdx n N 70b x X n 1 nsin n l x n 2 l Z l 0 x sin n l xdx n N 70c p mX fn t n n f x t x x N K L O 5 m 68 67a 67c X n 1 T 00 n t n a l 2 Tn t sin n l x X n 1 fn t sin n l x 71a X n 1 Tn 0 sin n l x X n 1 nsin n l x 71b X n 1 T 0 n 0 sin n l x X n 1 nsin n l x 71c d 5 N mX AT O X sin k x l l 0 l k T 00 n t n a l 2 Tn t fn t 72a Tn 0 n T 0 n 0 n 72b X K U Tn t ncos n a l t l n n a sin n a l t l n a Z t 0 fn sin hn a l t i d 73 J 68 K 67 XJ f x t 0 K k fn t 0 u z 1 22 X g gz g u n9D aq K u 2 51 73 uw J A g J 1 3 SO B 7 P4 J u N K 73 fn t K A 5 Xe fn t c KN w k A c l n a 2 u Tn t Ancos n a l t Bnsin n a l t c l n a 2 3 g g 18 2 72b An Bn fn t ct 5 k A ct l n a 2 N X q X fn t ccos t dsin t u A n a l n 72a b A C cos t Dsin t C D l Tn t Ancos n a l t Bnsin n a l t ccos t dsin t n a l 2 2 X An Bn 2 XJ G Laplace C K K 72 A N Laplace C u K 0 n x J y32 ww u m 68 m U A g K XJ 67a k u x X a xk o 68 v Ec L J K E u K b u K 67 AT x 2u t2 K 2u x2 F x t 0 x 0 74a u x 0 0 u x l 0 t 0 74b u t 0 x u t t 0 x 0 x l 74c p ru K y3 68 m F x t X n 1 Fn t sin n l x Fn t 2 l Z l 0 F x t sin n l xdx n N 75 N X n 1 x T00 n t K n l 2 Tn t sin n l x X n 1 Fn t sin n l x 76 du kx x d aqu 72a J 3 g 3 sin m x l l0 l x 5 mn 2 l Z l 0 x sin m l xsin n l xdx 77 X n 1 mnT00 n t K m l 2 Tm t Fm t m N 78 u x Tm t m 1 72b K S J 38c e AT m 68 AT x sin n x l n 1 3 g g 19 y3 e m u x t X n 1 Tn t Xn x 79 74a 74b X n 1 x T00 n t Xn x KTn t X 00 n x F x t 80 X n 1 Tn t Xn 0 X n 1 Tn t Xn l 0 81 XJX00 n x x Xn x Xn 0 Xn l 0 o K k S XJ 3 K 74 F x t 0 lC u x t X x T t oX x v K KX00 x x X x 0 82a X 0 0 X l 0 82b A T t K v T00 t T t 0 L e I T x p 1 k JK IO Sturm Liouville K c K y x weight K UC x X e Sturm Liouville K T K N 1 k n 0 2 3 1 2 n n 1 20 m 79 74c 3 N Tn 0 Rl 0 Xn x x x dx Rl 0 X2 n x x dx T0 n 0 Rl 0 Xn x x x dx Rl 0 X2 n x x dx 87 x N K 82 Xn x 2d 85 87 Tn t m 79 K 74 Y L x E K 82 J d w m g K AT A g K x5 m u x t c rN o gz 9D K u x u x 0 t u x u x l t 88 0 2 26 0 2 26 0 t t 5 1 na X x 0 e 0 K 1 a e 0 K 1 a e 6 0 K 1na du 2 26 0 c e U3 gz g5 X J 5 g gz XJ 5 g U gz g K gz g E U u0 x t u x t v U 52 u x t v x t u0 x t 5 Kz v x t K w v g K X E u0 x t U 88 u0 x t t 7 t t k 88 9 x b e x 5 u0 x t A t xB t 89 88 B t A t XJ 1 a Kdu u0 x t x B t Us t t b e x g u0 x t xA t x2B t 90 2 88 B t A t 1 a 5 89 we 89 88 B t A t t 91a l B t A t t 91b 4 21 uB t A t 5 X 1 l l 92 T1 B t A t du y k K m T1 u d1 0 l 0 2d1 0 k 0 K 6 0 0 1 a 89 U 90 e A f 11 a u x 0 t u x l t 89 A t t A t lB t t dd B t A t u0 x t t x l t t d c L 64 21 a u x x 0 t u x x l t c d AT 90 A t t A t 2lB t t dd B t A t u0 x t x t x2 2l t t 3 u x 0 t u x x l t 89 A t t B t t u0 x t t x t SK l m m 4 k N u0 S SvkT T 3 S u x t 4 c A 9D K 9 gC K 9 gC d K q K k vk k K lC e K 2u x2 2u y2 0 0 x l 0 y 9 o L K J y3 e A u x y X x Y y 94 93a 93b 1 Y 00 y Y y 0 95 K X00 x X x 0 96a X 0 0 X0 l 0 96b 3 lC e k K 96 1 XJ 0 K 96a X x C cosh x Dsinh x C D 96b C 0 Dcosh l 0 cosh l 1 0 D 0 u X x 0 T 0 2 0 K 96a X x C cos x Dsin x C D 96b d X 0 0 C 0 2d X0 l 0 Dcos l 0 T 7L cos l 0 XdK D N n 2n 1 2l n N u n 2 n 2n 1 2l 2 Xn x sin nx sin 2n 1 2l x n N 97 D 1 51 XJ n n 2n 1 2l KAT n N 7L5 2 2 ww v O L X K XJ cos nx o L y uy 3 B o U O G L O I3 v 4 23 7 5 X 1 2 I 0 vk T G e 101 x 5 d Sturm Liouville K y 5 y S N y Z l 0 sin mxsin nxdx Z l 0 sin 2m 1 2l xsin 2n 1 2l xdx l 2 mn m n N 98 97 95 Y 00 n y 2 nYn y 0 n N 99 5 exp ny exp ny cosh ny sinh ny e O B 5 sinh n d y sinh ny Yn y Ansinh n d y Bnsinh ny n N 100 An Bn u e v 93a 93b u x y X n 1 Ansinh n d y Bnsinh ny sin nx 101 93c X n 1 Ansinh ndsin nx x X n 1 Bnsinh ndsin nx x 102 du x 5 X An Bn d 98 An 2 lsinh nd Z l 0 x sin nxdx Bn 2 lsinh nd Z l 0 x sin nxdx 103 x x N O X 101 K p g u K g g u X 9D K X Laplace 7 k g K k T e 2 g Poisson K 2u x2 2u y2 f x y 0 x l 0 y E g m 5 L du K k r Kz K5 2u1 x2 2u1 y2 f x y 0 x l 0 y d 105a u1 x 0 0 u1 x l 0 0 y d 105b u1 y y 0 x u1 y y d x 0 x l 105c 2u2 x2 2u2 y2 0 0 x l 0 y 106b X S L 5 4 IX Xc lC k H5 u gC K X n m a K lC U u G 3n m N n N I X IX r I I G 3 AT A IX X K AT IX XJ IX K lC lC I 9 K c A N n 3 K y G u K XJu o A 5 4 IX 25 K J u IX K E XJ 3N K y X 9 l X S K ow AT 4 IX 3 4 IX 9D K 9A K I U IX K K 9 gC c A aq K k A AT5 3 4 IX Laplace 2u 1 u 1 2 2u 2 0 109 Laplace d IX L IC x cos y sin g O uO IX Laplace c X d 0 6 k e b d AT5 e u N y3 e A u R 110 109 1 2R00 R0 R 0 111 00 0 112 3 lC A 5 3 IX I A A IX X 4 IX I 2 L A n 3 A ATk AT T K 7L u 2 u 113 110 R 2 0 R 2 114 d n AT v 5 I A5 g natural boundary conditions g k q 5 112 K e K 5 4 IX 26 1 XJ 0 K 112 Ce De C D 114 C e 2 1 e D e 2 1 e 0 du k 7L 7Lk C e 2 1 0 D e 2 1 0 0 e 2 1 6 0 l C D 0 u 0 T 0 2 0 K 112 Cei De i C D 114 C ei 2 1 ei D e i 2 1 e i 0 du k 7L 7Lk C ei 2 1 0 D e i 2 1 0 D ei 2 1 0 XJ ei 2 1 6 0 K C D 0 l 0 T T 7L ei 2 1 XdK C D N m m N u m m2 m cosm sinm m N 116 y3 Au k Au y degeneration degree of degeneracy p 2 5 u 1 3 O V n J N uy 38c e B XJ3 116 m 0 K 115 J r k m m2 m cosm sinm m N 117 5 4 IX 27 5 3 m 0 m 6 0 I m m 0 S k 1 m 6 0 2 117 x3 m 0 2 S IO Fourier m 111 2R00 m R 0 m m 2Rm 0 118 3 L Euler X N gC C et z X d2Rm dt2 m2Rm 0 dd Rm emt e mt m 6 0 R0 1 t C 5 gC Rm m m m N R0 1 ln 119 R k 118 k m L m 0 U 118 R00 0 0 u R00 B0 l R0 A0 B0ln A0 B0 J 117 119 109 u A0 B0ln X m 1 m Amcosm Bmsinm X m 1 m Cmcosm Dmsinm 120 X S Laplace K 2u 1 u 1 2 2u 2 0 121b A0 X m 1 Amcosm Bmsinm F 123 du x 5 X o v 2d x 5 A0 1 2 Z 2 0 F d Am 1 Z 2 0 F cosm d Bm 1 Z 2 0 F sinm d 124 5 4 IX 28 F N O X 122 K 121 aq Laplace K 2u 1 u 1 2 2u 2 0 a 125a u a G 125b du 120 ln m3 k 5 AT B0 0 Am Bm 0 m N l u A0 X m 1 a m Cmcosm Dmsinm 126 125b A0 X m 1 Cmcosm Dmsinm G 127 u X A0 1 2 Z 2 0 G d Cm 1 Z 2 0 G cosm d Dm 1 Z 2 0 G sinm d 128 G N O X 126 K 125 XJ K k X a x k 5 K u u l 120 z u A0 B0ln X m 1 Am m Cm m cosm 129 AT 122 3 v Laplace 126 3 v Laplace 120 3 v Laplace 3 v Laplace K U u A0 n N c J e n K N a u E0 E0 R u m n A K Lda K N l n 2 d n K U e L A 1 n du N N S 5 4 IX 29 5du 3 3 K w k U 1 IX z q E0 x du k z Cz R u z xy L5 K K u G U 4 IX 1n K du vk u v Laplace K k u A K dd e K 2u 1 u 1 2 2u 2 0 a 130a u a 0 130b u E0 cos u0 130c u0 I L 5 5 u0 U 5 3O 4 L k 1o K dc K k x 5 K 129 130c K A0 B0ln X m 1 Am mcosm u0 E0 cos A0 u0 B0 0 A1 E0 Am 0 m 1 131 u u u0 E0 cos X m 1 Cm mcosm 132 2 130b u0 E0acos X m 1 Cma mcosm 0 u0 0 C1 E0a2 Cm 0 m 1 133 u E0 cos E0a2 cos 134 5 4 IX 30 1 J J 1 w 1 K d aA J 0 u n a 0 u a 2 0E0cos 135 w 2 2 2 3 2 K z o Q R 2 0 ad 2a 0E0 R 2 0 cos d 0 X 51 K a J 134 y 1 3 k 5 du K 3 w d 3 S 3k 3 v Laplace c dK L du 3 L K J g y3 2 2 2 d S ad A 4f du l 2acos 4f 4 ad 2acos 4a2 0E0cos2 d o 4 p R 2 24a 2 0E0 cos2 d 2 a2 0E0 x n 4f p 4f p ql l 0 q ql n 4f p 2 0 2 pcos 2 0 p J 134 1 3 NC E 2E0cos 3 0 N B g 1 XJ 5 z Q T K 2 XJ T KX J I k kg SN oPoisson n 0 e g Poisson n e S K 2u 1 u 1 2 2u 2 f a 136a u a F 136b K k n O0 Xe XJ f K L f 2 K m dE dt Z l 0 v t 2v t2 a2 v x x v t dx 6 5 533 1 1 f x t gS 1 dE dt Z l 0 v t 2v t2 a2 2v x2 dx a2 v x v t l 0 147a 147b 5 y3z 1 1 a dE dt 0 l E t E 0 d 147c E 0 0 u E t 0 E t K 7k v t 0 v x 0 u v x t 2d T l v x t 0 5 1 148 1 L U w PT U u U u X e 3gd e u 3x x x 3 v T v x x x v x x T 2v x2 x dv x t C v x t v x t Z l 0 T 2v x2 v dx T v v x l 0 T Z l 0 v x v x dx 149 g du v O k v v x 2 v x 2 2 v x v x 150 XJz 1 a 1 a K 149 1 150 149 Z l 0 T 2v x2 v dx 1 2T Z l 0 v x 2 dx 1 2T Z l 0 v v x 2 dx 151 V 1 2T Z l 0 v x 2 dx 1 2 a 2 Z l 0 v x 2 dx 152 K u V TNX X V U U O 147a 5 v k v v t t Z l 0 T 2v x2 v dx Z l 0 2v t2 v dx 1 2 Z l 0 v v t 2 dx 1 2 Z l 0 v t 2 dx U 153 U V 0 y TNX X V U 2 XJu 1na Xx l X k u x l vk u G u l x l x 0 x l T v x kv x l 0 T U 149 1 l Z l 0 T 2v x2 v dx 1 2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论