全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
立体几何提高讲义1、如图,在在四棱锥P-ABCD中,PA面ABCD,AB=BC=2, AD=CD=,PA=,ABC=120,G为线段PC上的点.()证明:BD面PAC ; ()若G是PC的中点,求DG与PAC所成的角的正切值;()若G满足PC面BGD,求 的值.2、如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE/CF,BCF=CEF=,AD=,EF=2。()求证:AE/平面DCF;()当AB的长为何值时,二面角A-EF-C的大小为?3、如图,在四面体中,平面,是的中点,是的中点,点在线段上,且()证明:平面;()若二面角的大小为,求的大小4、如图,在四棱锥PABCD中,底面是边长为的菱形,且BAD120,且PA平面ABCD,PA,M,N分别为PB,PD的中点()证明:MN平面ABCD;() 过点A作AQPC,垂足为点Q,求二面角AMNQ的平面角的余弦值5、如图,在三棱锥中,D为BC的中点,PO平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2()证明:APBC;()在线段AP上是否存在点M,使得二面角A-MC-B为直二面角?若存在,求出AM的长;若不存在,请说明理由。6、如图, 在矩形中,点分别在线段上,.沿直线将 翻折成,使平面. ()求二面角的余弦值;()点分别在线段上,若沿直线将四边形向上翻折,使与重合,求线段的长7、如图,平面平面,是以为斜边的等腰直角三角形,分别为,的中点, (I)设是的中点,证明:平面; (II)证明:在内存在一点,使平面,并求点到,的距离8、如图,四棱锥中,底面为菱形,底面,是上的一点,。()证明:平面;()设二面角为,求与平面所成角的大小。9、如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC平面AA1C1C,AB=3,BC=5.()求证:AA1平面ABC;()求二面角A1-BC1-B1的余弦值;()证明:在线段BC1存在点D,使得ADA1B,并求的值.10、如图,在中,、分别为、上的点,且/,将沿折起到的位置,使,如图()求证:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论