相似三角形判定方法.doc_第1页
相似三角形判定方法.doc_第2页
相似三角形判定方法.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

判定方法证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“ABC与DEF相似”,那么就说明这两个三角形的对应顶点没有写在对应的位置上,而如果是符号语言的“ABCDEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。 方法一平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线分线段成比例的证明) 方法二如果一个三角形的两个角与另一个三角形的两个角对应相等, 那么这两个三角形相似。 方法三 如果两个三角形的两组对应边成比例,并且相应的夹角相等, 那么这两个三角形相似 方法四如果两个三角形的三组对应边成比例,那么这两个三角形相似 方法五(定义)对应角相等,对应边成比例的两个三角形叫做相似三角形 一定相似的三角形1.两个全等的三角形一定相似。(全等三角形是特殊的相似三角形,相似比为1) 2.两个等腰直角三角形一定相似(两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。) 3.两个等边三角形一定相似。(两个等边三角形,三角都是60度,且边边相等,所以相似) 三角形相似判定定理相似三角形的判定定理:(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。(简叙为两角对应相等两三角形相似). (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.) (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.) (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似 直角三角形相似的判定定理:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似. (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 相似三角形的性质定理:(1)相似三角形的对应角相等. (2)相似三角形的对应边成比例. (3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比. (4)相似三角形的周长比等于相似比. (5)相似三角形的面积比等于相似比的平方. 三角形相似的判定定理推论推论一:顶角或底角相等的两个等腰三角形相似。 推论二:腰和底对应成比例的两个等腰三角形相似。 推论三:有一个锐角相等的两个直角三角形相似。 推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。 推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。 推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。 性质1.相似三角形对应角相等,对应边成比例。 2.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。 3.相似三角形周长的比等于相似比。 4.相似三角形面积的比等于相似比的平方。 5.相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方 6.若a:c =c:b,即c的平方=ab,则c叫做a,b的比例中项 7.c/d=a/b 等同于ad=bc. 特例-全等三角形1.相似比为1 2.对应角相等 3.对应边相等 4.对应高相等 5.对应中线相等 6.对应角平分线相等 7.周长相等 8.面积相等 射影定理 射影定理(又叫欧几里德(Euclid)定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 例如:(前提:BAD+DAC=90度,ADBC) 公式RtABC中,BAC=90,AD是斜边BC上的高,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论