



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
现象解释:可能很多同学都有这种经历,在寝室里4台电脑开着,电扇开着、日光灯开着都可以正常运行,没有任何问题,但是什么电器都不开,就插了一个小小的电热杯,电表就跳闸了。为什么会出现这种现象呢?电脑的电源都是250W300W的,4台电脑功率之和绝对在一个电热杯之上,但为什么可以带4台电脑同时工作但不能接入一个300W的电热杯呢?两者有什么不同呢?下面我们就来研究一下。 我们平时使用的最多的加热装置就是热得快、电热杯或者电饭锅,它们的工作原理就是电流流过电阻丝,电阻丝发热来烧水。对于220V电网来说,这类负载相当于一个纯电阻接到电网里,学过电路的同学都知道,交流220V加到电阻上,其两端的电压波形和流过电阻的电流波形是同相的,也就是说,两者相位差是0。这类负载我们称之为纯电阻性负载。 计算机相当于什么负载呢?我们知道我们的电脑机箱的后上方,有一个方块状的铁盒子,那就是计算机的电源。这个电源对于电网来说,就是电网的一个负载。计算机的电源是开关电源(注意,这可不是有开关的电源哦),属于非线性负载(也叫整流性负载)。开关电源的原理是先把220V50hz交流电整流为高压直流,再把高压直流逆变为高压高频交流,再通过高频变压器降为低压高频交流,然后再转为低压直流输出,这种电源的效率要比传统稳压器高得多。把计算机的开关电源当做220V电网的一个负载,这种负载在220V市电输入端看来等效于一个容性负载,虽然它的电压波形还是正弦波,但是它的电流波形已经畸变了,不再是规则的正弦波,而是接近脉冲波的波形(其实这种非线性负载才是对电网有危害的恶性负载,会给电网带来高次谐波)。 那么电表如何识别这两种负载呢?方法有很多种,但都是通过单片机+AD转换器,对220V输出端的电压电流的波形实时采样,然后编制相应的程序,通过算法,判断这两种负载的功率各占多大的比例,仅仅限制纯电阻性负载的接入。 “识别器”限制的不是用电总功率,而是瞬间的阶跃功率,如果阶跃功率大于事先的设定,系统将自动切断负载电路,在间隔一段时间后,系统自动尝试性恢复供电,经过识别判断没有大功率阻性电热负载接入电路,从而继续正常供电。 给宿舍安装“智能负载识别器”的目的是很明确的,就是为了限制违章电器的使用,消除隐患,保障广大师生的生命财产安全。 识别的原理是:通过电表测量出增加那部分负载的功率和功率因数,因为电热杯之类的阻性负载的功率因数较高,达到0.99以上,再通过判断增加的功率,二者即识别出恶性负载实行断电控制。目前我所能做到的识别是:功率因数大于0.9999998,最小增量负载大于20W。即可实现断电。之后由管理员来实现送电。达到安全用电的目的,以保护学生朋友们的人身和财产安全注:功率因数:在交流电路中,电压与电流之间的相位差()的余弦叫做功率因数,用符号cos表示,在数值上,功率因数是有功功率和视在功率的比值,即cos=P/S.理论解释:1线性负载的定义和特征 在我国UPS的国标GB/T7260-3中对线性负载有明确的定义:“3.2.6 线性负载 linear load 当施加可变正弦电压时,其负载阻抗参数(Z)恒定为常数的那种负载。” 在交流电路中,负载元件有电阻R、电感L和电容C三种,它们在电路中所造成的结果是不相同的。在纯电阻电路中,正弦电压U施加在一个电阻R上,则产生电流I也是正弦性的,电流I与电压U相位是相同的。如:电压u=Umsint,则i=Imsint;电流的有效值I=U/R。电流通过电阻发热,电能转换为热能,即P=UI=I2R。在纯电感电路中,正弦电压施加在一个电感线圈L上,因电流是交变的,造成在线圈中产生感应电势,使得电流虽然仍然是正弦的,但相位上却滞后电压90(电角度为/2)。如电压u=Umsint,则i=Imsin(t-/2)。电流的有效值I=U/(2f L)=U/XL;XL=2f L称之为感抗。电流在电路中流动,将电源的电能带到线圈中,转换为磁能,然后又把磁能转换为电能返回电源。所以在电路中没有功率消耗,平均功率为零。无功功率Q=UI=I2XL。在纯电容电路中,正弦电压施加在一个电容量为C的电容器上,因电流携带电荷积累在电容的极板上产生电容电压,使得电流虽然仍然是正弦的,但相位上却超前电压90(电角度为/2)。如电压u=Umsint,则i=Imsin(t+/2);电流有效值I=2fCU=U/XC;XC=1/(2fC)。称之为容抗。电流在电路中流动,将电源的电能带到电容器中,转换为电场能量,然后又把电场能量转换为电能返回电源。所以在电路中没有功率消耗,平均功率为零。无功功率Q=UI=I2XC。一般将感抗和容抗统称为电抗。在一般具有电阻R和电感L、电容C的线性负载上(RLC线性电路),施加正弦性电压,则电流仍然是正弦性的,但是电流与电压之间的相位关系,既不是同相也不是相差90,而是相差一个角。 如电压u=Umsint,则i=Imsin(t)。电流有效值I=U/Z。Z即为阻抗,它与电阻、电抗的关系是:Z2=R2+X2。电抗为感抗XL和容抗XC的综合值。相位差角是由负载中的R、L、C参数决定的。在呈现为感性时为正,容性时为负。tg=X/R。阻抗Z、电抗X和电阻R三者构成阻抗直角三角形。负载上的视在功率S=UI,有功功率P=UIcos,无功功率Q=UIsin,S2=P2+Q2,三者构成功率三角形。 在这里要说明一点,决定负载特征的不仅是负载阻抗的大小,还有功率因数的大小。综合来讲,在线性负载中,有纯阻性(功率因数为1)和感性(功率因数小于1)、容性(功率因数小于1),以及纯感性和纯容性(功率因数均为0)。上述这些负载都属于线性负载,不能认为只有功率因数为1的纯阻性负载是线性的,功率因数不为1的其他负载就不是线性的。这是本文所要特别强调的。2 非线性负载的定义和特征 在我国UPS的国标GB/T7260-3中对非线性负载也有明确的定义:“3.2.7 非线性负载 non-linear load 负载阻抗参数(Z)不总为恒定常数,随诸如电压或时间等其它参数而变化的那种负载。”非线性负载的种类繁多,在UPS供电的负载中多是整流滤波型,UPS的输入也是整流滤波型。因此,IEC标准中便制定了一个基准非线性负载(Reference non-linear load),做为标准的附录列入标准中。用这个基准非线性负载检验UPS带非线性负载的能力。在UPS国标GB/T7260-3中,也在附录E中给出了这个基准非线性负载电路,如图1所示。这个电路之所以是非线性负载,就是因为在输入端施加正弦电压u时,当电压瞬时值大于电容上的直流电压,则电源给负载R1供电,并向电容充电。当电压瞬时值小于电容上直流电压时,因二极管的阻断作用,电源不再供电,而由电容放电使负载保持电流的连续性。所以这个负载对于电源呈现的阻抗是随电压瞬时值的大小而改变的。非线性负载的一个重要特点就是当对负载施加正弦形电压时,电流并不是正弦形的。图1的负载电路交流电流是间断的、尖峰的。而图2是这种非线性负载的电压和电流的波形图,由此可以看出,电流是一个尖峰形的。分析和计算非线性电路中的电流和功率,使用的方法是用傅立叶函数分析的方法,用等效的正弦量代替非正弦量。在这个具体电路中:电源输入电压u=u1+u3+u5+u7+,此处u1是基波电压分量,因为交流输入电源可以认为是正弦形的,所以没有高次谐波分量,则u=u1。此处交流电流i=i1+i3+i5+i7+i9+i11。 每一次谐波电流都是正弦形的,它们都有自己的幅值、有效值(I1、I3、I5)以及电流与同频率电压之间的相位差(1、3、5、7)。 以等效的正弦形电流替代非正弦电流,其有效值的平方等于各谐波分量有效值的平方和,即:I2=I12+I32+I52+I72+。在这个电路中,瞬时功率值p=ui=u1(i1+i3+i5+i7+i9+i11)。平均功率P=U1I1cos1=UI1cos1,亦称之为有功功率。与线性电路相同,令电路中的视在功率为S,S=UI。同样无功功率为Q,三个功率之间的关系仍为S2=P2+Q2。有功功率与视在功率的比值为电路中的功率因数 :PF=P/S=UI1cos1/UI=I1cos1/I=cos1。 系数=I1/I1。功率因数PF值比基波的相位差的功率因数cos1还要小一些。谐波中高次谐波占的比例越大,则越小,功率因数也就越小。这样就可以把一个非线性的负载化为线性负载进行计算和分析。 在诸多负载中,非线性负载很复杂,电流波形种类很多。有尖峰的、有双峰的等等,仅仅用其电流大小来说明还是不够的。为了说明非线性与线性电流差别的程度,用一个参数来表示,这就是峰值因数。在GB/T7260-3标准中是这样说的:“3.3.29 峰值因数peak
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年数控超精密磨床项目申请报告
- 2025年炔烃项目立项申请报告
- 教育行业教学经历证明书(6篇)
- 品牌宣传推广合同协议
- 巧克力包装机设计-课程设计
- 食品加工工艺与设备案例分析题
- 2025年电商数据分析与电商运营管理专业电子商务师(初级)职业技能鉴定试卷
- 快乐读书读后感作文5篇
- 个人实习证明书标题实习经历证明书(8篇)
- 2025年初中化学九年级上册期中测试卷:化学与环境问题探究试题
- 珠宝公司文件管理制度
- 2025-2030年中国3C数码充电器行业市场深度调研及市场供需与投资价值研究报告
- 2024年黄冈团风县招聘城区社区工作者真题
- 2026届云南三校高考备考联考卷(一)化学试卷+答案
- 2025年山东省高考历史试卷真题
- 2025至2030中国农膜行业发展分析及发展前景与投资报告
- 2025图解《政务数据共享条例》V1.0学习解读
- 2024中国农业银行分行年度营销宣传方案
- 2025电商平台店铺转让合同模板
- 2025长城汽车人才测评答案
- 2021利达JB-QG-LD988EL JB-QT-LD988EL 火灾报警控制器 消防联动控制器调试手册
评论
0/150
提交评论