高二数学选修1-1《3.4生活中的优化问题举例》学案(第2课时).doc_第1页
高二数学选修1-1《3.4生活中的优化问题举例》学案(第2课时).doc_第2页
高二数学选修1-1《3.4生活中的优化问题举例》学案(第2课时).doc_第3页
高二数学选修1-1《3.4生活中的优化问题举例》学案(第2课时).doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.4生活中最优化问题(第二课时)自学目标:1 使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用2 提高将实际问题转化为数学问题的能力 重点: 利用导数解决生活中的一些优化问题难点: 利用导数解决生活中的一些优化问题教材助读:求解应用问题的方法:解决实际应用问题的关键在于建立数学模型和目标函数,把问题情境译为数学语言,找出问题的主要关系,并把问题的主要关系近似化,形式化,抽象成数学问题,再划归为常规问题,选择合适的数学方法求解。预习自测1、一条长为的铁丝截成两段,分别弯成两个正方形,要使两个正方形的面积和最小,两段铁丝的长度分别是多少?请你将预习中未能解决的问题和有疑惑的问题写下来,待课堂上与老师和同学探究解决。 合作探究 展示点评 探究一:磁盘的最大存储量问题计算机把数据存储在磁盘上。磁盘是带有磁性介质的圆盘,并有操作系统将其格式化成磁道和扇区。磁道是指不同半径所构成的同心轨道,扇区是指被同心角分割所成的扇形区域。磁道上的定长弧段可作为基本存储单元,根据其磁化与否可分别记录数据0或1,这个基本单元通常被称为比特(bit)。为了保障磁盘的分辨率,磁道之间的宽度必需大于,每比特所占用的磁道长度不得小于。为了数据检索便利,磁盘格式化时要求所有磁道要具有相同的比特数。问题:现有一张半径为的磁盘,它的存储区是半径介于与之间的环形区域(1) 是不是越小,磁盘的存储量越大?(2) 为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)?探究二:节省材料问题例2、圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?当堂检测1一边长为a的正方形铁片,铁片的四角截去四个边长都是x的小正方形,然后做成一个无盖方盒,x 多大时,方盒的容积V最大?2用总长为14.8m的钢条制作一个长方体容器的框架,如果所制作的容器的底面的一边比另一边长0.5m,那么高为多少时容器的容积最大?并求出它的最大容积。 拓展提升 1、一书店预计一年内要销售某种书15万册,欲分几次订货,如果每次订货要付手续费30元,每千册书存放一年要耗库费40元,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论