2013年广东高考理科概率与统计二轮专题复习.doc_第1页
2013年广东高考理科概率与统计二轮专题复习.doc_第2页
2013年广东高考理科概率与统计二轮专题复习.doc_第3页
2013年广东高考理科概率与统计二轮专题复习.doc_第4页
2013年广东高考理科概率与统计二轮专题复习.doc_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

概率与统计二轮专题复习广东省惠阳一中实验学校 邓赞武高考趋势本节知识的考查多以基本的概念和运算为主,难度不是很大。高考中,概率解答题一般有两大方向的考查.一、以频率分布直方图或茎叶图为载体,考查统计学中常见的数据特征:如平均数,中位数,频数,频率等或古典概型;二、以应用题为载体,考查条件概率,独立事件的概率,随机变量的期望与方差等。一、近三年概率与统计考查情况(广东理科)理科(含排列组合、二项式定理)2010年题7正态分布题17频率分布直方图、概率分布列、二项分布2011年题6互斥事件及独立事件的概率题13线性回归分析题17分层抽样、概率知识及分布列题10二项式定理、项的系数2012年题7排列组合问题题17 频率分布直方图、概率分布列等知识,数据处理能力、运算求解能力、看图理解能力题10二项式定理、项的系数一 基础再现考点1、抽样方法1.(2009年广东卷文)某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1200编号,并按编号顺序平均分为40组(15号,610号,196200号).若第5组抽出的号码为22,则第8组抽出的号码应是 。若用分层抽样方法,则40岁以下年龄段应抽取 人.考点2、总体分布的估计2(2010年高考北京卷理科11)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。由图中数据可知a 。若要从身高在 120 , 130),130 ,140) , 140 , 150三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在140 ,150内的学生中选取的人数应为 。考点3、总体特征数的估计3.【2012高考真题陕西理6】从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为,中位数分别为,则( )A. , B. ,C. , D. ,考点4、变量的相关性4(2011广东文)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间(单位:小时)与当天投篮命中率之间的关系:时间12345命中率0.40.50.60.60.4小李这5天的平均投篮命中率为 ;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为 考点5、计数原理或古典概型5.【2012高考真题广东理7】从个位数与十位数之和为奇数的两位数种任取一个,其个位数为0的概率是( )A. B. C. D.考点6、几何概型6.【2012高考真题福建理6】如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为( )A. B. C. D. 考点7、条件概率7(2010年高考安徽卷理科15)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球。先从甲罐中随机取出一球放入乙罐,分别以和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以表示由乙罐取出的球是红球的事件,则下列结论中正确的是_(写出所有正确结论的编号)。; ; 事件与事件相互独立;是两两互斥的事件; 的值不能确定,因为它与中哪一个发生有关考点8、互斥事件或独立重复事件及其发生的概率8.【2012高考真题新课标理15】某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布,且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 考点9、分布列与期望9.(2009广东卷理)已知离散型随机变量的分布列如右表若,则 , 考点10、正态分布10(2010年高考广东卷理科7)已知随机变量X服从正态分布N(3.1),且=0.6826,则p(X4)=( )A、0.1588 B、0.1587 C、0.1586 D0.1585考点11、统计案例11(2011湖南文)通过随机询问110名不同的大学生是否爱好某项运动,得到如下列联表:男女总计爱好402060不爱好203050总计6050110由附表:0050001000013841663510828参照附表,得到的正确结论是( )A 有99%以上的把握认为“爱好该项运动与性别有关”B 有99%以上的把握认为“爱好该项运动与性别无关”C 在犯错误的概率不超过01%的前提下,认为“爱好该项运动与性别有关”D 在犯错误的概率不超过01%的前提下,认为“爱好该项运动与性别无关”考点12、二项式定理12.【2012高考真题广东理10】的展开式中x的系数为_(用数字作答)基础再现感悟解答1【解析】由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37. 40岁以下年龄段的职工数为,则应抽取的人数为人. 【答案】37, 202【解析】由各个小组的频率之和为1,可得a=0.030;而三组身高区间的人数比为3:2:1,由分层抽样的原理不难得到140-150区间内的人数为3人。【答案】0.030;33【解析】根据平均数的概念易计算出,又,故选B. 4【解析】小李这5天的平均投篮命中率,线性回归方程,则当时,预测小李该月6号打6小时篮球的投篮命中率为【答案】;5【解析】法一:对于符合条件“个位数与十位数之和为奇数的两位数”分成两种类型:一是十位数是奇数,个位数是偶数,共有个,其中个位数为0的有10,30,50,70,90共5个;二是十位数是偶数,个位数是奇数,共有,所以故选D法二:设个位数与十位数分别为,则,1,2,3,4,5,6,7,8,9,所以分别为一奇一偶,第一类为奇数,为偶数共有个数;第二类为偶数,为奇数共有个数。两类共有45个数,其中个位是0,十位数是奇数的两位有10,30,50,70,90这5个数,所以其中个位数是0的概率是【答案】D6【解析】根据定积分的几何意义可知阴影部分的面积,而正方形的面积为,所以点恰好取自阴影部分的概率为故选【答案】.7【解析】易见是两两互斥的事件,而。【方法总结】本题是概率的综合问题,掌握基本概念,及条件概率的基本运算是解决问题的关键.本题在是两两互斥的事件,把事件B的概率进行转化,可知事件B的概率是确定的. 【答案】.8【解析】三个电子元件的使用寿命均服从正态分布得:三个电子元件的使用寿命超过1000小时的概率为,超过1000小时时元件1或元件2正常工作的概率,那么该部件的使用寿命超过1000小时的概率为.【答案】9【解析】由题知,解得,.10【解析】=0.3413,=0.5-0.3413=0.1587【答案】B11.【解析】:由,而,故由独立性检验的意义知选A.12.【解析】,令得,所以【答案】20二范例1(对几何概型与古典概型区分的考查)在平面内,不等式确定的平面区域为,不等式组确定的平面区域为.()定义横、纵坐标为整数的点为“整点”. 在区域任取3个整点,求这些整点中恰有2个整点在区域的概率;()在区域每次任取个点,连续取次,得到个点,记这个点在区域的个数为,求的分布列和数学期望2(对超几何分布与二项分布的考查)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物。我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标某试点城市环保局从该市市区2011年全年每天的PM2.5监测数据中随机的抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)(I)从这15天的PM2.5日均监测数据中,随机抽出三天,求恰有一天空气质量达到一级的概率;(II)从这15天的数据中任取三天数据,记表示抽到PM2.5监测数据超标的天数,求的分布列;(III)以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按360天计算)中平均有多少天的空气质量达到一级或二级3(对互斥事件与独立事件的考查)、甲、乙两同学进行下棋比赛,约定每局胜者得1分,负者得0分(无平局),比赛进行到有一个人比对方多2分或比满8局时停止,设甲在每局中获胜的概率为,且各局胜负相互独立已知第二局比赛结束时比赛停止的概率为(I)如右图为统计这次比赛的局数n和甲、乙的总得分S,T的程序框图其中如果甲获胜,输人a=lb=0;如果乙获胜,则输人a=0,b=1请问在两个判断框中应分别填写什么条件?()求p的值;()设表示比赛停止时已比赛的局数,求随机变量的分布列和4(对频率分布直方图与分层抽样的考查)某班同学利用国庆节进行社会实践,对岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:()补全频率分布直方图并求、的值;()从岁年龄段的“低碳族”中采用分层抽样法抽取人参加户外低碳体验活动,其中选取人作为领队,记选取的名领队中年龄在岁的人数为,求的分布列和期望。5(对茎叶图与均数、方差的考查)甲、乙两位学生参加数学竞赛培训现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次记录如下:甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85(1)画出甲、乙两位学生成绩的茎叶图,指出学生乙成绩的中位数;(2)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由;(3)若将频率视为概率,对学生甲在今后的三次数学竞赛成绩进行预测,记这三次成绩中高于80分的次数为,求的分布列及数学期望6(对独立性检验的考查) 电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查。下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”。 ()根据已知条件完成下面的列联表,并据此资料你是否认为“体育迷”与性别有关? ()将上述调查所得到的频率视为概率。现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X。若每次抽取的结果是相互独立的,求X的分布列,期望和方差。附:7(在数学分支交汇处命制试题)某公司有电子产品件,合格率为96,在投放市场之前,决定对该产品进行最后检验,为了减少检验次数,科技人员采用打包的形式进行,即把件打成一包,对这件产品进行一次性整体检验,如果检测仪器显示绿灯,说明该包产品均为合格品;如果检测仪器显示红灯,说明该包产品至少有一件不合格,须对该包产品一共检测次(1)探求检测这件产品的检测次数;(2)如果设,要使检测次数最少,则每包应放多少件产品?范例剖析1、解析:()依题可知平面区域的整点为:共有13个,上述整点在平面区域的为:共有3个, . (4分)()依题可得,平面区域的面积为,平面区域与平面区域相交部分的面积为.(设扇形区域中心角为,则得,也可用向量的夹角公式求).在区域任取1个点,则该点在区域的概率为,随机变量的可能取值为:., , ,的分布列为 0123的数学期望:. (12分)(或者:,故).2解析:()记“从15天的PM2.5日均监测数据中,随机抽出三天,恰有一天空气质量达到一级”为事件,1分. 4分()依据条件,服从超几何分布:其中,的可能值为,其分布列为:.6分8分()依题意可知,一年中每天空气质量达到一级或二级的概率为,一年中空气质量达到一级或二级的天数为,则.10分,一年中平均有240天的空气质量达到一级或二级. 12分3解析:()程序框图中的应填,应填.(注意:答案不唯一.)2分()依题意得,当甲连胜2局或乙连胜2局时,第二局比赛结束时比赛停止.所以,解得: 或,因为,所以6分()依题意得,的可能值为2,4,6,8.,.所以随机变量的分布列为2468P故.12分4解析:()第二组的频率为,所以高为频率直方图如下: -2分第一组的人数为,频率为,所以由题可知,第二组的频率为03,所以第二组的人数为,所以第四组的频率为,所以第四组的人数为,所以 -5分()因为岁年龄段的“低碳族”与岁年龄段的“低碳族”的比值为,所以采用分层抽样法抽取18人,岁中有12人,岁中有6人 -6分随机变量服从超几何分布, -10分所以随机变量的分布列为0123-12分数学期望-12分5解析: (1)茎叶图如右:2分学生乙成绩中位数为84,4分(2)派甲参加比较合适,理由如下:5分=35.5=417分甲的成绩比较稳定,派甲参加比较合适8分(3)记“甲同学在一次数学竞赛中成绩高于80分”为事件A,则9分 随机变量的可能取值为0,1,2,3,且服从B()k=0,1,2,30123P的分布列为: (或)12分6解析:7解析:(1) 因为每一件产品被检验的次数是一随机变量,所以的取值为或则随机变量的概率分布为:P 4分所以每一件产品被检验的期望为=于是,这件产品被检验的次数为6分(2)由题设可知,所以=(当且仅当即)时等号成立因此,要使检测的次数最少,每包应放5件。12分三巩固训练1(2010年上海市春季高考6)某社区对居民进行上海世博会知晓情况的分层抽样调查。已知该社区的青年人、中年人和老年人分别有800人、1600人、1400人。若在老年人中的抽样人数是70,则在中年人中的抽样人数应该是 。2(2010年高考江苏卷试题4)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间5,40中,其频率分布直方图如图所示,则其抽样的100根中,有_根在棉花纤维的长度小于20mm。3(2010年高考山东卷理科6)样本中共有五个个体,其值分别为a,0,1,2,3,若该样本的平均值为1,则样本方差为(A) (B) (C) (D)24(2011山东文).某产品的广告费用x与销售额y的统计数据如下表 根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为(A)63.6万元 (B)65.5万元 (C)67.7万元 (D)72.0万元5.(2009江西卷理)为了庆祝六一儿童节,某食品厂制作了种不同的精美卡片,每袋食品随机装入一张卡片,集齐种卡片可获奖,现购买该种食品袋,能获奖的概率为A B C D w.w.w.k.s.5.u.c.o.m 6. (2010年全国高考宁夏卷13)设为区间上的连续函数,且恒有,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间上的均匀随机数和,由此得到N个点,再数出其中满足的点数,那么由随机模拟方案可得积分的近似值为 。7.(2011湖南理15)如图4,EFGH 是以O 为圆心,半径为1的圆的内接正方形。将一颗豆子随机地扔到该图内,用A表示事件“豆子落在正方形EFGH内”, B表示事件“豆子落在扇形OHE(阴影部分)内”,则(1)P(A)= _; (2)P(B|A)= 8. (2010年高考湖北卷理科4)投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰于向上 的点数是3”为事件B,则事件A,B中至少有一件发生的概率是 A. B. C. D.9. (2010年全国高考宁夏卷6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为(A)100 (B)200 (C)300 (D)40010(2010年高考山东卷理科5)已知随机变量Z服从正态分布N(0,),若P(Z2)=0.023,则P(-2Z2)=(A)0.477 (B)0.625 (C)0.954 (D)0.97711.(2011全国新课标理8)的展开式中各项系数的和为2,则该展开式中常数项为 (A)40 (B)20 (C)20 (D)4012(2010年高考广东卷理科17)(本小题满分12分)某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上40件产品作为样本算出他们的重量(单位:克)重量的分组区间为(490,,(495,,(510,,由此得到样本的频率分布直方图,如图4所示 (1)根据频率分布直方图,求重量超过505克的产品数量 (2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列 (3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率13.(2011广东理17)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽出取14件和5件,测量产品中的微量元素x,y的含量(单位:毫克)下表是乙厂的5件产品的测量数据:编号12345x169178166175180y7580777081(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量;(2)当产品中的微量元素x,y满足x175,且y75时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论