




已阅读5页,还剩45页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
章末复习提升 第3章导数及其应用 知识网络整体构建 要点归纳主干梳理 方法总结思想构建 栏目索引 知识网络整体构建 返回 要点归纳主干梳理 函数y f x 在点x0处的导数的几何意义 就是曲线y f x 在点p x0 f x0 处的切线的斜率 2 曲线的切线方程利用导数求曲线过点p的切线方程时应注意 1 判断p点是否在曲线上 2 如果曲线y f x 在p x0 f x0 处的切线平行于y轴 此时导数不存在 可得方程为x x0 p点坐标适合切线方程 p点处的切线斜率为f x0 3 利用基本初等函数的求导公式和四则运算法则求导数 熟记基本求导公式 熟练运用法则是关键 有时先化简再求导 会给解题带来方便 因此观察式子的特点 对式子进行适当的变形是优化解题过程的关键 4 判断函数的单调性 1 在利用导数讨论函数的单调区间时 首先要确定函数的定义域 解决问题的过程中 只能在函数的定义域内 通过讨论导数的符号 来判断函数的单调区间 2 注意在某一区间内f x 0 或f x 0 是函数f x 在该区间上为增 或减 函数的充分条件 5 利用导数研究函数的极值要注意 1 极值是一个局部概念 是仅对某一点的左右两侧邻近区域而言的 2 连续函数f x 在其定义域上的极值点可能不止一个 也可能没有极值点 函数的极大值与极小值没有必然的大小联系 函数的一个极小值也不一定比它的一个极大值小 3 可导函数的极值点一定是导数为零的点 但函数的导数为零的点 不一定是该函数的极值点 因此导数为零的点仅是该点为极值点的必要条件 其充要条件是加上这点两侧的导数异号 6 求函数的最大值与最小值 1 函数的最大值与最小值 在闭区间 a b 上连续的函数f x 在 a b 上必有最大值与最小值 但在开区间 a b 内连续的函数f x 不一定有最大值与最小值 例如 f x x3 x 1 1 2 求函数最值的步骤一般地 求函数y f x 在 a b 上最大值与最小值的步骤如下 求函数y f x 在 a b 内的极值 将函数y f x 的各极值与端点处的函数值f a f b 比较 其中最大的一个是最大值 最小的一个是最小值 7 应用导数解决实际问题 关键在于建立恰当的数学模型 函数关系 如果函数在区间内只有一个点x0 使f x0 0 则f x0 是函数的最值 返回 方法总结思想构建 题型一导数几何意义的应用导数几何意义的应用 主要体现在与切线方程有关的问题上 利用导数的几何意义求切线方程的关键是弄清楚所给的点是不是切点 常见类型有两种 一种是求 在某点处的切线方程 此点一定为切点 先求导 再求斜率 进而求出切线方程 另一种是求 过某点的切线方程 这种类型中的点不一定是切点 可先设切点为q x1 y1 则切线方程为y y1 f x1 x x1 再由切线过点p x0 y0 得y0 y1 f x1 x0 x1 又已知y1 f x1 由 求出x1 y1的值 即求出了过点p x0 y0 的切线方程 切线问题是高考的热点内容之一 在高考试题中既有选择题 填空题 也有综合性大题 难度一般为中等 例1已知函数f x x alnx a r 1 当a 2时 求曲线y f x 在点a 1 f 1 处的切线方程 解析答案 f 1 1 f 1 1 y f x 在点a 1 f 1 处的切线方程为y 1 x 1 即x y 2 0 2 求函数f x 的极值 解析答案 当a 0时 f x 0 函数f x 为 0 上的增函数 函数f x 无极值 当a 0时 由f x 0 解得x a x 0 a 时 f x 0 f x 在x a处取得极小值 且极小值为f a a alna 无极大值 综上 当a 0时 函数f x 无极值 当a 0时 函数f x 在x a处取得极小值a alna 无极大值 反思与感悟 反思与感悟 跟踪训练1已知函数f x ax3 3x2 6ax 11 g x 3x2 6x 12 直线m y kx 9 且f 1 0 1 求a的值 解因为f x 3ax2 6x 6a 且f 1 0 所以3a 6 6a 0 得a 2 解析答案 2 是否存在实数k 使直线m既是曲线y f x 的切线 又是y g x 的切线 如果存在 求出k的值 如果不存在 说明理由 解析答案 解因为直线m过定点 0 9 先求过点 0 9 且与曲线y g x 相切的直线方程 解析答案 当x0 1时 g 1 12 g x 21 切点坐标为 1 21 所以切线方程为y 12x 9 当x0 1时 g 1 0 g 1 9 切点坐标为 1 9 所以切线方程为y 9 下面求曲线y f x 的斜率为12和0的切线方程 因为f x 2x3 3x2 12x 11 所以f x 6x2 6x 12 由f x 12 得 6x2 6x 12 12 解得x 0或x 1 当x 0时 f 0 11 此时切线方程为y 12x 11 当x 1时 f 1 2 此时切线方程为y 12x 10 所以y 12x 9不是公切线 由f x 0 得 6x2 6x 12 0 解析答案 解得x 1或x 2 当x 1时 f 1 18 此时切线方程为y 18 当x 2时 f 2 9 此时切线方程为y 9 所以y 9是公切线 综上所述 当k 0时 y 9是两曲线的公切线 题型二应用导数求函数的单调区间在区间 a b 内 如果f x 0 那么函数y f x 在区间 a b 内单调递增 在区间 a b 内 如果f x 0 那么函数y f x 在区间 a b 内单调递减 解析答案 反思与感悟 解由题知 f x 的定义域是 0 设g x x2 ax 2 二次方程g x 0的判别式 a2 8 解析答案 反思与感悟 当x变化时 f x f x 的变化情况如下表 反思与感悟 反思与感悟 求解函数y f x 单调区间的步骤 1 确定函数y f x 的定义域 2 求导数y f x 3 解不等式f x 0 解集在定义域内的部分为增区间 4 解不等式f x 0 解集在定义域内的部分为减区间 特别要注意定义域 写单调区间时 区间之间用 和 或 隔开 绝对不能用 连接 解析答案 1 求f x 的单调区间 解函数f x 的定义域为 当x 0时 f x 0 当x 0时f x 0 所以f x 的单调递增区间为 0 单调递减区间为 0 2 证明 当f x1 f x2 x1 x2 时 x1 x2 0 解析答案 解析答案 同理 当x 1时 f x 0 当f x1 f x2 x1 x2 时 不妨设x1 x2 由 1 知x1 0 x2 0 1 下面证明 x 0 1 f x f x 当x 0 1 时 g x 0 g x 单调递减 所以 x 0 1 f x f x 又因为x2 0 1 所以f x2 f x2 从而f x1 f x2 因为x1 x2 0 f x 在 0 上单调递增 所以x1 x2 即x1 x2 0 题型三利用导数求函数的极值和最值1 利用导数求函数极值的一般步骤 1 确定函数f x 的定义域 2 解方程f x 0的根 3 检验f x 0的根的两侧f x 的符号 若左正右负 则f x 在此根处取得极大值 若左负右正 则f x 在此根处取得极小值 否则 此根不是f x 的极值点 2 求函数f x 在闭区间 a b 上的最大值 最小值的方法与步骤 1 求f x 在 a b 内的极值 2 将 1 求得的极值与f a f b 相比较 其中最大的一个值为最大值 最小的一个值为最小值 特别地 当f x 在 a b 上单调时 其最小值 最大值在区间端点取得 当f x 在 a b 内只有一个极值点时 若在这一点处f x 有极大 小 值 则可以断定f x 在该点处取得最大 小 值 这里 a b 也可以是 解析答案 解f x 3x2 2ax b 当x 2时 f 2 2 即切点为 2 2 又因为切线斜率k f 2 8 所以 所求切线方程为y 2 8 x 2 即8x y 14 0 解析答案 2 求函数y f x 在 2 1 上的最大值与最小值 解当x变化时 f x f x 的变化情况如下表 解析答案 1 若f x 在x 2时取得极值 求a的值 因为f x 的定义域是 0 所以当x 0 2 时 f x 0 当x 2 f x 0 所以当a 4时 x 2是一个极小值点 则a 4 2 求f x 的单调区间 解析答案 解析答案 所以g x 在x 1 上为增函数 题型四导数与函数 不等式的综合应用利用导数研究函数是高考的必考内容 也是高考的重点 热点 考题利用导数作为工具 考查求函数的单调区间 函数的极值与最值 参数的取值范围等问题 若以填空题出现 则难度以中低档题为主 若以解答题形式出现 则难度以中档以上为主 有时也以压轴题的形式出现 考查中常渗透函数 不等式等有关知识 综合性较强 解析答案 解f x x2 4ax 3a2 x a x 3a 令f x 0 得x a或x 3a 当x变化时 f x f x 的变化情况如下表 f x 在 a 和 3a 上是减函数 在 a 3a 上是增函数 当x 3a时 f x 取得极大值 f x 极大值 f 3a b 解析答案 2 若当x a 1 a 2 时 恒有 f x a 试确定a的取值范围 解f x x2 4ax 3a2 其对称轴为x 2a 因为0 a 1 所以2a a 1 所以f x 在区间 a 1 a 2 上是减函数 当x a 1时 f x 取得最大值 f a 1 2a 1 当x a 2时 f x 取得最小值 f a 2 4a 4 又因为0 a 1 解析答案 要使f x 0在 1 3 上恒有两个相异实根 即f x 在 1 2 2 3 上各有一个实根 解析答案 解析答案 则f x x2 4 因为x 2 1 所以f x 0 即函数f x 在区间 2 1 上单调递减 1 函数中求参数的取值范围问题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025出租专业租赁公司脚手架租赁合同
- 2025厂房及场地租赁合同范本涵盖场地使用与维护责任
- 2025版租赁住宅与室内空气质量检测合同
- 2025版外墙保温保温材料研发与推广应用合同
- 2025版能源企业员工劳动合同及节能减排承诺书
- 2025年度事业单位与劳动者双方聘用合同及劳动合同
- 2025版青少年素质教育培训合作合同
- 2025年度环保餐具采购与销售合作协议
- 2025年度银行存款质押贷款业务合同模板
- 2025版现代农业用地及开发权转让协议
- 卡牌版权合同
- 异常工况安全处置管理制度(根据导则编写)
- DL-T5588-2021电力系统视频监控系统设计规程
- DL-T5366-2014发电厂汽水管道应力计算技术规程
- 石材厂设备保养操作手册
- 金融理财基础知识
- 送别混声合唱简谱
- 全国食品安全风险监测参考值 2024年版
- 文昌顺发畜牧有限公司养猪场项目 环评报告
- 化学在材料科学中的应用
- 高中物理知识模型探究与实践-电磁学篇
评论
0/150
提交评论