2008届高三数学高考考前回归复习专题四应用题.doc_第1页
2008届高三数学高考考前回归复习专题四应用题.doc_第2页
2008届高三数学高考考前回归复习专题四应用题.doc_第3页
2008届高三数学高考考前回归复习专题四应用题.doc_第4页
2008届高三数学高考考前回归复习专题四应用题.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2008届高三数学高考考前回归复习专题四应用题一 、知识归纳1解应用题的一般程序(1)读:阅读理解文字表达的题意,分清条件和结论,理顺数量关系,这一关是基础.(2)建:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型.熟悉基本数学模型,正确进行建“模”是关键的一关.(3)解:求解数学模型,得到数学结论.一要充分注意数学模型中元素的实际意义,更要注意巧思妙作,优化过程.(4)答:将数学结论还原给实际问题的结果.2中学数学中常见应用问题与数学模型(1)优化问题.实际问题中的“优选”“控制”等问题,常需建立“不等式模型”和“线性规划”问题解决.(2)预测问题:经济计划、市场预测这类问题通常设计成“数列模型”来解决.(3)最(极)值问题:工农业生产、建设及实际生活中的极限问题常设计成“函数模型”,转化为求函数的最值.(4)等量关系问题:建立“方程模型”解决(5)测量问题:可设计成“图形模型”利用几何知识、三角知识解决.(6)统计问题:解决概率、统计中的有关问题。二、考题剖析例1用长为18 cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?例2某单位A在抗雪救灾中,需要在A、B两地之间架设高压电线,测量人员在相距6000m的C、D两地(A、B、C、D在同一平面上),测得ACD=45,ADC=75,BCD=30,BDC=15(如图),假如考虑到电线的自然下垂和施工损耗等原因,实际所须电线长度大约应该是A、B距离的1.2倍,问施工单位至少应该准备多长的电线?(参考数据:)13例3某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:日 期1月10日2月10日3月10日4月10日5月10日6月10日昼夜温差x(C)1011131286就诊人数y(个)222529261612 该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验 ()求选取的2组数据恰好是相邻两个月的概率; ()若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程; ()若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想? (参考公式: 三、热身冲刺1、某旅游商品生产企业,2007年某商品生产的投入成本为1元/件,出厂价为流程图的输YN开始输出结束出结果元/件,年销售量为10000件,因2008年国家长假的调整,此企业为适应市场需求,计划提高产品档次,适度增加投入成本若每件投入成本增加的比例为(),则出厂价相应提高的比例为,同时预计销售量增加的比例为已知得利润(出厂价投入成本)年销售量()写出2008年预计的年利润与投入成本增加的比例的关系式;()为使2008年的年利润比2007年有所增加,问:投入成本增加的比例应在什么范围内?2、轻纺城的一家私营企业主,一月初向银行贷款一万元作开店基金,每月月底获得的利润是该月初投入资金的,每月月底需要交纳房租和所得税为该月所得金额(包括利润)的,每月的生活费开支300元,余款作为资金全部投入再经营,如此继续,问该年年底,该私营企业主有现款多少元?如果银行贷款的年利率为,问私营企业主还清银行贷款后纯收入还有多少元?3、某民营企业生产A、B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位:万元)(1)分别将A、B两种产品的利润表示为投资的函数关系式,并写出它们的函数关系式;(2)该企业已筹集到10万元资金,并全部投入A、B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元)4、某校为扩大教学规模,从今年起扩大招生,现有学生人数为b人,以后学生人数年增长率为4.9该校今年年初有旧实验设备a套,其中需要换掉的旧设备占了一半学校决定每年以当年年初设备数量的10%的增长率增加新设备,同时每年换掉x 套的旧设备, (1)如果10年后该校学生的人均占有设备的比率正好比目前翻一番,那么每年应更换的旧设备是多少套? (2)依照(1)更换速度,共需多少年能更换所有需要更换的旧设备?下列数据供计算时参考:1.19=2.381.00499=1.041.110=2.601.004910=1.051.111=2.851.004911=1.06专题四二、考题剖析例1解:设长方体的宽为x(m),则长为2x(m),高为.故长方体的体积为从而令V(x)0,解得x=0(舍去)或x=1,因此x=1.当0x1时,V(x)0;当1x时,V(x)0,故在x=1处V(x)取得极大值,并且这个极大值就是V(x)的最大值。从而最大体积VV(x)912-613(m3),此时长方体的长为2 m,高为1.5 m.答:当长方体的长为2 m时,宽为1 m,高为1.5 m时,体积最大,最大体积为3 m3。例2解:在ACD中,CAD=180ACDADC=60CD=6000,ACD=45根据正弦定理AD= 5在BCD中,CBD=180BCDBDC=135CD=6000,BCD=30根据正弦定理BD= 10又在ABD中,ADB=ADCBDC=90根据勾股定理有=1000 13实际所需电线长度约为1.2AB7425.6(m) 15例3解:()设抽到相邻两个月的数据为事件A.因为从6组数据中选取2组数据共有15种情况,每种情况都是等可能出现的 (2分)其中,抽到相邻两个月的数据的情况有5种 (3分)所以(5分)()由数据求得(7分)由公式求得(9分)再由(10分)所以关于的线性回归方程为 (11分)()当时, ; (12分)同样, 当时, (13分)所以,该小组所得线性回归方程是理想的. (14分)三、热身冲刺1、解:()由流程图可知:依题意,得();()要保证2008年的利润比2007年有所增加,当且仅当,即解之得2、解:设每月月底的现款构成的数列为,则,即,成等比,且首项为,公比为108,(元),该年年底,该私营企业主有现款元,还贷后纯收入为(元)3、解:(1)设投资为x万元,A产品的利润为 f (x) 万元,B产品的利润为 g (x) 万元由题设由图知,(2)设A产品投入x万元,则B产品投入10x万元;设企业利润为y万元。,答:当A产品投入3.75万元,B产品投入6.25万元时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论