等离子体浸没离子注入论文:等离子体浸没离子注入 充电效应 PIC-MCC模型 混合PIC 圆柱形介质圆管.doc_第1页
等离子体浸没离子注入论文:等离子体浸没离子注入 充电效应 PIC-MCC模型 混合PIC 圆柱形介质圆管.doc_第2页
等离子体浸没离子注入论文:等离子体浸没离子注入 充电效应 PIC-MCC模型 混合PIC 圆柱形介质圆管.doc_第3页
等离子体浸没离子注入论文:等离子体浸没离子注入 充电效应 PIC-MCC模型 混合PIC 圆柱形介质圆管.doc_第4页
等离子体浸没离子注入论文:等离子体浸没离子注入 充电效应 PIC-MCC模型 混合PIC 圆柱形介质圆管.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【关键词】等离子体浸没离子注入 充电效应 PIC-MCC模型 混合PIC 圆柱形介质圆管【英文关键词】Plasma Immersion Ion Implantation Charging effects Particle In Cellplus Monte Carlo Collision(PIC/MCC)model Hybrid PIC Cylindrical dielectric tube等离子体浸没离子注入论文:等离子体浸没离子注入介质靶鞘层特性的粒子模拟研究【中文摘要】等离子体浸没离子注入(plasma immersion ion implantation,简称P)是在传统的束线离子注入(PB)的基础上提出的一种新的离子注入技术,由于其具有成本低、设备简单、易操作、适合处理复杂形状样品等诸多优点,在材料表面改性、半导体和微电子材料加工等方面得到广泛的应用。然而,由于介质材料的导电性能较差,在对介质材料进行表面改性时容易出现注入离子电荷在表面积累的现象,出现充电效应,从而导致注入离子能量达不到预期负脉冲电压幅值,严重影响注入效果;同时,对于空心圆柱形介质圆管的内表面的离子注入过程,除了充电效应,随着离子注入过程的进行,介质圆管内的鞘层不断向圆管中心扩展,鞘层在圆管中心会出现重叠现象,导致离子的注入剂量和注入能量降低。为了解决上述问题,对介质靶P过程中鞘层演化特性进行理论上的深入研究就显得尤为必要。因为注入材料表面的离子主要是在鞘层中获得加速,鞘层特性直接影响被加工材料的离子注入效果,同时,理论研究的结果可以揭示离子注入过程的物理机理,为实际离子注入工艺的优化提供一定的参考。本文主要采用粒子模拟(particle in cell,简称PIC)方法,对介质靶材料等离子体浸没离子注入过程中的鞘层演化规律和靶表面的离子注入特性进行了模拟研究,分析讨论了各种参数对P过程中鞘层演化和注入特性的影响。本论文的具体安排如下:第一章,介绍了P技术的特点及其发展应用、P技术在平板介质靶和圆管介质靶的应用研究现状及意义,综述了对P过程进行计算机模拟时常用到的模拟方法。第二章,对等离子体模拟中使用的PIC/MCC模拟方法进行了详细的介绍,把PIC/MCC分成PIC和MCC两个部分进行讲述。同时,结合本文要用到的算法,在讨论模型时对一维平板模型和柱坐标下的二维模型都做了相应的推导。第三章,采用二维混合PIC(Hybrid PIC)的方法对介质圆管内表面的P过程进行了数值模拟,得到了空间鞘层演化的规律,并且对离子注入剂量和注入能量均匀性的进行了讨论。结果显示:在介质圆管内表面P过程中,随着积累电荷的增多,充电效应越来越明显,导致介质表面的电势降低,注入能量减小;其次,离子注入剂量在介质圆管内表面的分布不均匀,在介质圆管管口附近位置注入剂量明显偏大。当介质圆管内离子完全注入到介质内表面后,由于管口外端离子还会继续注入到管口内表面,随着注入时间的增加,这种不均匀性变得越来越严重。因此,在介质圆管内离子完全注入到内壁前结束一个脉冲周期就变得尤为必要;最后,适当延长金属电极的长度,可以有效的提高介质圆管内表面离子注入剂量和离子注入能量的均匀性。第四章,我们针对混合PIC在处理短脉冲P中的不足(假设电子满足波尔兹曼分布,从而忽略了电子的运动和效应对离子注入的影响),采用完全自洽的一维PIC/MCC模型对一维平板介质靶P过程进行了模拟。该模型完全跟踪电子和离子的运动轨迹,对带电粒子运动过程中与中性气体间的碰撞过程及介质表面的二次电子发射过程进行了全面的考虑;同时讨论了介质厚度和气体压强对注入过程的影响。结果表明,为了获得较好的注入效果,应该尽量采用较薄的介质、短的脉冲上升时间和低的放电气压。【英文摘要】Plasma immersion ion implantation (P) is a new ion implantation technology based upon the traditional ion-beam ion implantation (PBII) technology, as P has many advantages such as low costs, simple equipment, easily operation and is capable to process the work-piece with complex shape. Presently, P technology has been widely used in the modification of materials, semiconductor treatment, and microelectronic materials processing, etc. However, when treating the dielectric substrate with P, the implanted ions can accumulate at the dielectric surface owing to the low electric conductivity of the dielectric materials, and this result in the charging effects. So the implanted ions cant get the full acceleration with the same amplitude of the applied negative pulse. Whats more, with the time extend, the converging plasma sheaths from the inner surfaces of the cylindrical dielectric tube could get overlapping in the central axis, the implanted dose and energy decrease further. In order to solve these problems, it is necessary to sduty theoretically the sheath evolution near the inner of the cylindrical dielectric tube during the P processing. Because the implanted ions mainly get acceleration from the plasma sheath, the characteristics of the plasma sheath directly affect the final properties of the target materials after P process. With the theoretical investigation, the physical mechanism of ion implantation can be revealed, and the results can give some guidance for the optimization of an actual P process.In this thesis, we adopt the particle-in-cell method to study the principles of the sheath expansion and implantation characteristics in P process with a dielectric target. The influences of many parameters on the P are discussed. The thesis is organized as:In Chapter1, we briefly introduce the characteristics and applications of P technology, the current research state and significance of the P in flat and cylindrical dielectric materials, and also review the investigation methods of computer simulation for P.In Chapter2, we give a detailed description about the Particle-In-Cell plus Monte Carlo Collision (PIC/MCC) method which is used in plasma computer simulation. We divide the PIC/MCC method into two parts, and introduce the PIC and MCC method, respectively. At the same time, we also make a corresponding derivation of the one-dimension flat plate model and two-dimension cylindrical model.In Chapter3, the sheath expansion near the inner surface of a cylindrical dielectric tube is investigated by using a two-dimension hybrid PIC model. The influence of experimental parameters (such as the metal electrode length and dielectric thickness) on the uniformity of implanted ions dose and energy along the inner surface of the dielectric tube is analyzed and discussed. It finds that during the P process, as there are increasingly amount of charges accumulate on the dielectric surface, the charging effect become much more significant, leading a lower surface potential and lower implanted energy. Secondly, with a finite length cylindrical dielectric tube, the distribution of the implanted ion dose along the inner surface is nonuniform, the implanted dose near the top of the bore is much bigger than the other region. When all the ions inner the tube get implanted, many ions originate from outside of the bore continued to implant into the inner surface, this make the nonuniformity of the implanted dose more serious. So, it is very important for improving the implanted dose uniformity to end a single pulse period before all of the ions in the tube get exhaust. At last, the implanted ions energy distribution uniformity along the inner surface of the dielectric tube can been improved by using a longer metal electrodeIn Chapter4, In order to overcome the shortage of hybrid PIC in the simulation of a nanosecond pulse P (in the hybrid PIC model, electrons are supposed to be Boltzmanns distribution and thus lack the movement effect of electrons to P), we employ a self-consistent PIC/MCC model to study P to PET substrate. With the model, ions and electrons are both dynamically traced simultaneously. The various collision processes of electrons collision and the secondary electron emission (SEE) on the surface of PET substrate are included. We have studied the influence of the thickness of dielectric film and the gas pressure on P. The simulation results demonstrate that it is necessary to use a lower pressure and thinner PET substance to get better P property in P of dielectric film.【目录】等离子体浸没离子注入介质靶鞘层特性的粒子模拟研究摘要4-6Abstract6-71 引言10-201.1 等离子体浸没离子注入技术及其发展应用10-141.1.1 等离子体浸没离子注入技术10-121.1.2 等离子体浸没离子注入技术的发展及应用12-141.2 P技

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论