概率论与数理统计20100122全专业期未试题.doc_第1页
概率论与数理统计20100122全专业期未试题.doc_第2页
概率论与数理统计20100122全专业期未试题.doc_第3页
概率论与数理统计20100122全专业期未试题.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

概率论与数理统计2010.01.22全专业期未试题第一题,填空题:1. P(A)=0.7,P(A-B)=0.3,P()=_0.6_2. (0,1)中取两个数和小于1的概率_0.5_3. 三次射击都是独立重复事件,每次的概率为P(0P1),至少射中一次的概率为P3-3P2+3P4. 设随机变量的方差D(X)=2,则根据切比雪夫不等式,有P|X-E(X)| 答案:e-1 (感觉太简单了,怀疑你把f(x)弄成F(X)了)4.X和Y独立,分布。服从(0,3)均匀分布,Pmax(x,y)1= 听说是1/95.X服从参数为1的泊松分布,则PX=E()=A. B. C. D.第三题,计算题:1. 设随机变量X在2,3,4三个整数中等可能地取一个值,另一个随机变量Y在2X中等可能取一整数值,求:(1)(X,Y)的联合分布律;(2)X及Y的边缘分布律;(3)X与Y的协方差Cov(X,Y);解:(1)由已知可得X的概率Pi =1/3, Pj =1/(i-1) (i=2,3,4);所以(X,Y)的联合分布律为YX23421/30031/61/6041/91/91/9(2)由(1)可得X的边缘分布律为X234P1/3 1/3 1/3Y的边缘分布律为Y234P11/185/181/9(3)E(XY)=22(1/3)+23(1/3)+24(1/3)+32(1/6)+33(1/6)+34(1/6)+42(1/9)+43(1/9)+44(1/9)=29/2E(X)=21+3(1/2)+4(1/3)=29/6E(Y)=211/18+311/18+411/18=11/2Cov(X,Y)= E(XY) E(X)E(Y)=(29/2) (29/6) (11/2)=145/122,设二维随机变量(X,Y)在区域G=(x,y)|0x1,|y|x上服从均匀分布,试求:(1)(X,Y)的联合密度函数,(2)X的边缘密度(3)求Z=2x+1的概率密度(4)求Z=2x+的方差D(Z)解:(1)如右图,区域G的面积S=1,得 1 0x1,-xyx f(x,y) 0 其它 (2)当x0,x1时, 0当0x1时,fX(x)=-xx1dx=2x所以 2x 0x1 fX(x) 0 其它(3)0x11z3当z1,z3时,FZ(z)=0当1z3时,FZ(z)=PZz=P2X+1z=PX(z-1)/2=FX(z-1)/2)=0(z-1)/22xdx=(z2/4)-(z/2)+(1/4)对FZ(z)进行求导,得 (z/2)-(1/2) 1z3 f Z(z)= 0 其它 (4)E(Z)=13zf(z)dz=13(z2/2-z/2)dz=7/3E(Z2)= 13z2f(z)dz=13(z3/2-z2/2)dz=17/3D(Z)= E(Z2)= (E(Z)2 =2/93.设某批电子元件的使用寿命(单位:小时)服从参数=的指数分布,从中随机抽取25只元件,设其独立,试用中心定理求这25只电子元件的使用寿命总和大于1800小时的概率。(2)=0.9772?这道不会做哦。4.设总体X具有分布律为X123Pi2(1-)其中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论