全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
利用导数求参数的取值范围复习重点:利用导数的有关知识,求参数的取值范围导数的几何意义、函数的极值和最值的求法、函数单调性的充要条件的应用一 已知函数单调性,求参数的取值范围类型1参数放在函数表达式上例 设函数略解:()由()方法:方法:方法解题方法总结:求后,若能因式分解则先因式分解,讨论=0两根的大小判断函数的单调性,若不能因式分解可利用函数单调性的充要条件转化为恒成立问题.基础训练:类型2参数放在区间边界上例已知函数过原点和点(-1,2),若曲线在点P处的切线与直线且切线的倾斜角为钝角.(1) 求的表达式(2) 若在区间2m-1,m+1上递增,求m的取值范围.略解 (1)总结:先判断函数的单调性,再保证问题中的区间是函数单调递增(递减)区间的一个子区间即可.基础训练:二已知不等式在某区间上恒成立,求参数的取值范围类型参数放在不等式上例3.已知(1) 求、的值及函数的单调区间(2) 若对恒成立,求的取值范围略解:(1) 总结:区间给定情况下,转化为求函数在给定区间上的最值.基础训练:类型2参数放在区间上例已知三次函数图象上点(1,8)处的切线经过点(3,0),并且在x=3处有极值.() 求的解析式.() 当时, 0恒成立,求实数m的取值范围.分析:(1)基础训练:三知函数图象的交点情况,求参数的取值范围例5.已知函数处取得极值(1) 求函数的解析式.(2) 若过点可作曲线y=的三条切线,求实数m的取值范围.略解(1)求得(2)设切点为总结:从函数的极值符号及单调性来保证函数图象与x轴交点个数.基础训练:四. 开放型的问题,求参数的取值范围。例已知且。(1)设,求的解析式。(2)设,试问:是否存在,使在()上是单调递减函数,且在()上是单调递增函数;若存在,求出的值;若不存在,说明理由。分析:(1)易求c=1,(2),由题意在()上是单调递减函数,且在()上是单调递增函数知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025浙江台州市椒江城建置业有限公司招聘1人笔试历年备考题库附带答案详解试卷2套
- 2025浙江乐清市中心区发展有限公司拟聘笔试历年备考题库附带答案详解试卷2套
- 2025浙江中意启迪投资股份有限公司招聘国有企业工作人员1人笔试历年备考题库附带答案详解试卷2套
- 2025河南洛阳文化旅游投资集团有限公司所属企业部分岗位招聘11人笔试历年常考点试题专练附带答案详解试卷2套
- 2025河北张家口智数建设发展集团有限公司招聘劳务派遣制工作人员2笔试历年备考题库附带答案详解试卷2套
- 2025江西省金控投资集团有限公司社会招聘3人(第四批次)笔试历年典型考点题库附带答案详解试卷2套
- 2025江西奉新县创农旅游公司招聘合同制员工笔试及笔试历年典型考点题库附带答案详解试卷2套
- 2025江西吉安市吉州区园投人力资源服务有限公司面向社会招聘劳务外包工作人员初审及安排笔试历年常考点试题专练附带答案详解试卷2套
- 2025江西南昌市临空城投集团招聘29人笔试历年难易错考点试卷带答案解析试卷2套
- 2025江苏连云港市赣榆区农业发展集团有限公司及下属子公司招聘通过及笔试历年备考题库附带答案详解试卷2套
- 2025贵州毕节市金沙县国有资本投资运营集团有限公司招聘笔试及笔试历年备考题库附带答案详解2卷
- 福建省厦门市大同中学2025-2026学年高二物理第一学期期末统考试题含解析
- 分期购车的合同范本
- 2025至2030废旧手机行业项目调研及市场前景预测评估报告
- 箱变移位施工合同协议
- 智启氢程:AI技术在氢能领域的应用研究
- 2025设备租赁合同补充协议范本设备租赁合同补充协议书
- 2025年内蒙古能源行业分析报告及未来发展趋势预测
- 浙江省杭州市2026届高三上学期11月一模试题 语文 含解析
- 2025-2026学年苏少版七年级综合实践活动上册(全册)教学设计(附目录)
- 全国大学生职业规划大赛《运动训练》专业生涯发展展示【高职(专科)】
评论
0/150
提交评论