已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本科边缘生专项辅导一:三角与向量【命题趋向】该专题的内容包括三角函数的图象与性质、平面向量、简单的三角恒等变换、解三角形高考在该部分的选择和填空题,一般有两个试题。一个试题是,如果在解答题部分没有涉及到正、余弦定理的考查,会有一个与正余弦定理有关的题目,如果在解答题中涉及到了正、余弦定理,可能是一个和解答题相互补充的三角函数图象、性质、恒等变换的题目;一个试题是以考查平面向量为主的试题,这个试题的主要命题方向是(1)以平面向量基本定理、共线向量定理为主,(2)以数量积的运算为主;三角函数解答题的主要命题方向有三个:(1)以三角函数的图象和性质为主体的解答题,往往和平面向量相结合;(2)以三角形中的三角恒等变换为主题,综合考查三角函数的性质等;(3)以实际应用题的形式考查正余弦定理、三角函数知识的实际应用【考点透视】该专题的主要考点是:三角函数的概念和性质(单调性,周期性,奇偶性,最值),三角函数的图象,三角恒等变换(主要是求值),三角函数模型的应用,正余弦定理及其应用,平面向量的基本问题及其应用【方法技巧】1.三角函数恒等变形的基本策略。(1)常值代换:特别是用“1”的代换,如1=cos2+sin2=tanxcotx=tan45等.(2)项的分拆与角的配凑.如分拆项:sin2x+2cos2x=(sin2x+cos2x)+cos2x=1+cos2x;配凑角:=(+),=等.(3)降次与升次.(4)化弦(切)法.(4)引入辅助角.asin+bcos=sin(+),这里辅助角所在象限由a、b的符号确定,角的值由tan=确定.2.解三角等式的思路.利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式.3.解三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等.4.解答三角高考题的策略.(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析” .(2)寻找联系:运用相关公式,找出差异之间的内在联系.(3)合理转化:选择恰当的公式,促使差异的转化.题型1 利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化.08高考浙江理 若则=A B C D分析:可以结合已知和求解多方位地寻找解题的思路方法一:,其中,即,再由知道,所以,所以 方法二:将已知式两端平方得方法三:令,和已知式平方相加得,故,即,故方法四:我们可以认为点在直线上,而点又在单位圆上,解方程组可得,从而这个解法和用方程组求解实质上是一致的 方法五:只能是第三象限角,排除CD,这时直接从选择支入手验证,由于计算麻烦,我们假定,不难由同角三角函数关系求出,检验符合已知条件,故选B点评:本题考查利用三角恒等变换求值的能力,试题的根源是考生所常见的“已知,求的值(人教A版必修4第三章复习题B组最后一题第一问)”之类的题目 ,背景是熟悉的,但要解决这个问题还需要考生具有相当的知识迁移能力题型2三角函数平移与向量平移的综合三角函数与平面向量中都涉及到平移问题,虽然平移在两个知识系统中讲法不尽相同,但它们实质是一样的,它们都统一于同一坐标系的变化前后的两个图象中.解答平移问题主要注意两个方面的确定:(1)平移的方向;(2)平移的单位.这两个方面就是体现为在平移过程中对应的向量坐标.例 把函数ysin2x的图象按向量(,3)平移后,得到函数yAsin(xj)(A0,0,|j|)的图象,则j和B的值依次为( )A,3B,3C,3D,3【分析】根据向量的坐标确定平行公式为,再代入已知解析式可得.还可以由向量的坐标得图象的两个平移过程,由此确定平移后的函数解析式,经对照即可作出选择.【解析1】由平移向量知向量平移公式,即,代入ysin2x得y3sin2(x),即到ysin(2x)3,由此知j,B3,故选C.【解析2】由向量(,3),知图象平移的两个过程,即将原函数的图象整体向左平移个单位,再向下平移3个单位,由此可得函数的图象为ysin2(x)3,即ysin(2x)3,由此知j,B3,故选C.【点评】此类题型将三角函数平移与向量平移有机地结合在一起,主要考查分析问题、解决问题的综合应用能力,同时考查方程的思想及转化的思想.本题解答的关键,也是易出错的地方是确定平移的方向及平移的大小.题型3 三角函数的图象:三角函数图象从“形”上反应了三角函数的性质,一直是高考所重点考查的问题之一2009年福建省理科数学高考样卷 为得到函数的图象,只需将函数的图象A向左平移个长度单位B向右平移个长度单位C向左平移个长度单位D向右平移个长度单位分析:先统一函数名称,在根据平移的法则解决解析:函数,故要将函数的图象向左平移个长度单位,选择答案A 题型4 三角形中的三角恒等变换:这是一类重要的恒等变换,其中心点是三角形的内角和是,有的时候还可以和正余弦定理相结合,利用这两个定理实现边与角的互化,然后在利用三角变换的公式进行恒等变换,是近年来高考的一个热点题型皖南八校09高三联考理 三角形的三内角,所对边的长分别为,设向量,若,(1)求角的大小;(2)求的取值范围分析:根据两个平面向量平行的条件将向量的平行关系转化为三角形边的关系,结合余弦定理解决第一问,第一问解决后,第二问中的角就不是独立关系了,可以用其中的一个表达另一个,就把所要解决的问题归结为一个角的三角函数问题解析:(1), 由余弦定理,得(2), 题型5 正余弦定理的实际应用:这类问题通常是有实际背景的应用问题,主要表现在航海和测量上,解决的主要方法是利用正余弦定理建立数学模型2007宁夏(本小题满分12分)如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D. 现测得,并在点C测得塔顶A的仰角为,求塔高.解:在BCD中,.2分由正弦定理得5分所以 8分在RtABC中, 12分题型6三角函数与平面向量的结合:三角函数与平面向量的关系最为密切,这二者的结合有的是利用平面向量去解决三角函数问题,有的是利用三角函数去解决平面向量问题,更多的时候是平面向量只起衬托作用,三角函数的基本问题才是考查的重点2009年杭州教学质量检测 已知向量,(),令,且的周期为(1) 求的值;(2)写出在上的单调递增区间分析:根据平面向量数量积的计算公式将函数的解析式求出来,再根据的周期为就可以具体确定这个函数的解析式,下面只要根据三角函数的有关知识解决即可解析:(1) ,的周期为 , , (2) 由于,当()时,单增, 即(),在上的单调递增区间为点评:本题以平面向量的数量积的坐标运算为入口,但本质上是考查的三角函数的性质,这是近年来高考命题的一个热点题型7 三角函数的最值:最值是三角函数最为重要的内容之一,其主要方法是利用正余弦函数的有界性,通过三角换元或者是其它的三角恒等变换转化问题例 已知函数,且 (1)求实数,的值;(2)求函数的最大值及取得最大值时的值分析:待定系数求,;然后用倍角公式和降幂公式转化问题解析:函数可化为 (1)由,可得,所以, (2),故当即时,函数取得最大值为点评:结论是三角函数中的一个重要公式,它在解决三角函数的图象、单调性、最值、周期以及化简求值恒等式的证明中有着广泛应用,是实现转化的工具,是联系三角函数问题间的一条纽带,是三角函数部分高考命题的重点内容【练习】已知角A、B、C为ABC的三个内角,其对边分别为a、b、c,若(cos,sin),(cos,sin),a2,且()若ABC的面积S,求bc的值()求bc的取值范围【分析】第()小题利用数量积公式建立关于角A的三角函数方程,再利用二倍角公式求得A角,然后通过三角形的面积公式及余弦定理建立关于b、c的方程组求取bc的值;第()小题正弦定理及三角形内角和定理建立关于B的三角函数式,进而求得bc的范围.【解】()(cos,sin),(cos,sin),且,cos2sin2,即cosA,又A(0,),A.又由SABCbcsinA,所以bc4,由余弦定理得:a2b2c22bccosb2c2bc,16(bc)2,故bc4.()由正弦定理得:4,又BCpA,bc4sinB4sinC4sinB4sin(B)4sin(B),0B,则B,则sin(B)1,即bc的取值范围是(2,4.2008宁夏文(本小题满分12分)如图ACD是等边三角形,ABC是等腰直角三角形,ACB=90,BD交AC于E,AB=2. ()求cosCBE的值; ()求AE.解: (I)因为所以.所以6分 (II)在ABE中,AB=2,由正弦定理故12分2009宁夏理(本小题满分12分) 为了测量两山顶M,N间的距离,飞机沿水平方向在A,B两点进行测量,A,B,M,N在同一个铅垂平面内(如示意图)。飞机能够测量的数据有俯角和A,B间的距离,请设计一个方案,包括:指出需要测量的数据(用字母表示,并在图中标出);用文字和公式写出计算M,N间的距离的步骤。解:方案一:需要测量的数据有:A点到M,N点的俯角;B点到M,N的俯角;A、B的距离d(如图所示). 3分第一步:计算AM,由正弦定理;第二步:计算AN,由正弦定理;第三步:计算MN,由正弦定理.方案二:需要测量的数据有:A点到M,N点的俯角;B点到M,N的俯角;A、B的距离d(如图所示).
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年深圳市恒运昌真空技术有限公司(企业信用报告)
- 城乡水务一体化项目施工方案
- 员工年终总结书写技巧及范文合集
- 幼儿园教师继续教育培训课程设计
- 名家名篇读书沙龙
- BIM与物联网技术结合的智能施工方案
- 钙基高分子复合材料生产线项目技术方案
- 油气储运工程职业规划及发展路径
- 2022年职称考试专业知识复习题
- 小学音乐五年级三峡主题公开课教案
- 生源地就业调查报告
- 写小狗的说明文
- 室内空间手绘表现技法高职全套教学课件
- 《义务教育数学课程标准(2022年版)》解读
- 广东省法院通讯录
- 某证券公司财务信息系统建立方案
- GB/T 700-2006碳素结构钢
- GB/T 6144-1985合成切削液
- 人保财险首台套重大技术装备综合保险条款
- 产品质量法-产品质量法课件
- 《有效沟通与实用写作教程》课件-(11)
评论
0/150
提交评论