




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
16.1 教学设计潼南区古溪镇初级中学校 滕彩霞教学目标:1.了解二次根式的概念,理解二次根式有意义的条件.2.掌握二次根式的性质,并能将二次根式的性质运用于化简.3.了解最简二次根式的概念,会判断一个二次根式是不是最简二次根式.4、经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识.教学重、难点:【重点】了解二次根式的概念,理解二次根式有意义的条件.【难点】会求二次根式中字母的取值范围.教学过程:导入 :1.教师出示复习题:(1)4的平方根是;0的平方根是;-16的平方根是.(2)5的平方根是;5的算术平方根是.学生口答:(1)4的平方根是2;0的平方根是0;-16没有平方根.(2)5的平方根是;5的算术平方根是.2.教师出示教材第2页“思考”题:用带有根号的式子填空,看看写出的结果有什么特点:(1)面积为3的正方形的边长为,面积为S的正方形的边长为.(2)一个长方形的围栏,长是宽的2倍,面积为130 m2,则它的宽为m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时离地面的高度h(单位:m)满足关系h=5t2.如果用含有h的式子表示t,那么t为.学生思考后回答,教师补充得出答案:(1),;(2);(3).新课:一. 二次根式的概念1、让我们一起来看下面的问题:上面得到的式子, 分别表示什么意义?它们有什么共同特征?教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.讨论:你能用一个式子表示一个非负数的算术平方根吗?学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如(a0)的式子叫做二次根式,“”称为二次根号.追问:在二次根式的概念中,为什么要强调“a0”?教师引导学生举出例子说明,经过讨论知道二次根式被开方数必须是非负数. 让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性,再让学生体会由特殊到一般的过程,培养学生的概括能力,最后通过讨论二次根式中被开方数a0,进一步加深学生对二次根式被开方数必须是非负数的理解. 2、像,这样的式子有什么共同特点呢?学生观察,交流发现:一是从形式上看,都含有二次根号;二是被开方数的取值范围有限制:被开方数必须是非负数.教师进一步明确:形如(a0)的式子叫做二次根式.引导学生说一说对二次根式的认识:(1)表示a的算术平方根;(2)a可以是数,也可以是代数式;(3)从形式上看,含有二次根号;(4)a0,0.二、例题解析下列各式中,哪些是二次根式?并指出二次根式中的被开方数.,(x3),(y-1),(xy0).引导学生观察根指数和被开方数分析发现:显然不是二次根式(因为它的根指数是4,含有四次根号),其余式子都含有二次根号,关键看根号下的被开方数是否为非负数.若根号下是负数,则二次根式没有意义.解:,(x3),(xy0)是二次根式.其中被开方数依次是7,x-3,(x+1)2,.解题策略当被开方数形式是含有字母的代数式时,可以把这个代数式看成一个整体.如的被开方数是x2+2015.当被开方数形式比较复杂时,可以将这个被开方数适当化简.如,因为(-3)2-7=9-7=2,所以它的被开方数其实就是2.【变式训练】下列各式中,一定是二次根式的是()A.B.C.D.(其中a0)解析的被开方数-9D.x解析:是二次根式,因此2x-10,在分母上,因此0.则解得x.故选C.3.当x=时,二次根式有最小值,其最小值是.解析:二次根式有意义,x+30,即x+3的最小值是0,x+3=0,解得x=-3.答案:-304.求下列各式中字母a的取值范围:(1);(2);(3);(4).解:(1)由a+10,得a-1.字母a的取值范围是大于或等于-1的实数.(2)由0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广东中山市中山翠亨新区翠雅学校初中教师招聘17人考前自测高频考点模拟试题及答案详解(夺冠系列)
- 2025江西吉安市泊士停车管理有限公司万安分公司派遣人员招聘1人考前自测高频考点模拟试题及答案详解(名校卷)
- 2025江西南昌市青山湖区招聘社区工作者(专职网格员)45人模拟试卷及答案详解(网校专用)
- 检验流程标准化建设-洞察与解读
- 2025湖南湘潭市韶山思政教育实践中心招聘教师2人考前自测高频考点模拟试题附答案详解(典型题)
- 2025河南信阳市潢川县民政局招聘公益性岗位1人考前自测高频考点模拟试题完整答案详解
- 超临界应用探索-洞察与解读
- 2025湖州吴兴宝易矿业有限公司招聘2人模拟试卷及一套答案详解
- 2025年济源示范区乡村医生“乡聘村用”招聘7名模拟试卷及答案详解(必刷)
- 基于视觉的箱体尺寸测量-洞察与解读
- DB51∕T 3231-2024 公路隧道岩爆防控技术规程
- 新高考考试命题培训心得体会
- 2023CSCO头颈部肿瘤诊疗指南
- DB54∕T 0425.1-2024 公共数据 数据元规范 第一部分:总则
- 长期留置导尿的并发症及管理
- 七年级语文上册第一单元古诗词赏析训练题
- 2025年医药流通行业运行统计分析报告
- DZ/T 0275.2-2015岩矿鉴定技术规范第2部分:岩石薄片制样
- 茶叶示范基地管理制度
- 2025-2030中国高纯二氧化钛行业市场现状供需分析及投资评估规划分析研究报告
- 中医馆诊所标准服务流程及日常工作指导细则-范本
评论
0/150
提交评论