【移动互联网必读】手机上的大数据(五):手机上的APP推广.doc_第1页
【移动互联网必读】手机上的大数据(五):手机上的APP推广.doc_第2页
【移动互联网必读】手机上的大数据(五):手机上的APP推广.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【编者按】本文由百分点信息无线业务部高级总监李晓东、Talking Data COO徐懿以及成都电子科大的龚亮联合撰写。无线应用的大数据有着重要的作用。但是对于手机阅读以及手机音乐的大数据分析仅限于特定App,而现实情况中还存在另外一种应用,即App之间互相推广,此处我们将其命名为App互推联盟。 互联网的一些事APP互推是一种通过挖掘App之间的隐含关系,将一个App推送到另外一个相关类的App上,而整个移动端App的应用个数有好几十万,所以数据包含的信息是相当丰富。如果我们能有效利用这数据,则我们能够采用更有效的方法来实现App的互推,同时利用这些大数据,我们为移动广告找到了一个更有效的平台。Database Modeling是一个数据库的建模功能,任何庞大的数据都需要一个正确的分析机制大数据分析中的问题 全局数据打通当我们获取单独App数据时,这些数据都是孤立的小岛,我们不太会关心用户在其他App中有什么样的行为特征。当我们拥有数十万个APP时,如果能将各App数据进行打通,那我们能获得的利用将是无穷无尽的。在PC端,浏览器可以通过cookie、flash等方式记录一个用户的ID,而在手机端这种方法却欠妥,因为手机端的用户使用App的频率远高于浏览器的频率。但是我们仔细发现,每个用户所使用的手机MAC号一般情况下是唯一的(在极少情况下不唯一),所以我们可以通过MAC号来将用户进行打通。 信息补全在前一章节无线音乐应用中,我们遇到一个棘手的问题是,用户信息不完整,我们不能有效地给其推送恰当的歌曲。用户信息不完整的主要原因是因为在该APP中留下的信息量少,如果我们能利用用户在其他APP的信息来补全用户信息,则可以大大提供用户在该APP中听歌的体验。 互联网的一些事App的互推在没有打通App数据之前,App互推一般都是根据随机原则、热门App原则、相似相近原则来进行推荐。这些方法存在很多问题,如不同用户App推荐一样,推荐App被用户喜好的准备低等。当多个App数据打通后,原始App推送方法可以得到明显的改善。因为一方面我们可以获取用户的全局信息,利用这些信息我们可以更好的为用户做个性化的推荐,另一方面由于App的打通我们能更好的将用户、App进行聚类分析,这样更加方便相似用户对相似应用的喜好。App中的广告应用在没有打通App数据之前,App的广告一般都是根据App的关键词原则进行投放,不同用户在登录同一个App时可能接受到同一个广告。这种投放方法存在一个明显问题就是只抓住了App的匹配性,并没有抓住App上具体人的匹配性。比如一个人刚浏览玩母婴类的App转入另外一个音乐类的App时,该音乐类App大多会为其投放音乐类广告,而不是母婴类的广告。App在设计之初就会针对广告位置和内容进行规划当我们把App数据打通后,因为全局信息的关系使得用户就有了记忆功能。所当上诉情况发生时,音乐网

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论