


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次方程重点:能灵活运用直接开平方法、配方法、公式法、因式分解法解一元二次方程。难点:1、会根据根的判别式判断一元二次方程的根的情况。2、掌握一元二次方程根与系数的关系式,并会运用它解决有关问题。复习流程回忆整理1方程中只含有 未知数,并且未知数的最高次数是 ,这样的 方程叫做一元二次方程.通常可写成如下的一般形式:_ ( )其中二次项系数是 、一次项系数是 常数项 。例如: 一元二次方程7x3=2x2化成一般形式是_其中二次项系数是 、一次项系数是 常数项是 。 2解一元二次方程的一般解法有(1)_ (2) (3) (4)求根公式法,求根公式是 _ 3一元二次方程ax2bxc0 (a0)的根的判别式是 ,当 时,它有两个不相等的实数根;当 时,它有两个相等的实数根;当 时,它没有实数根。例如:不解方程,判断下列方程根的情况:(1) x(5x+21)=20 (2) x2+9=6x (3)x2 3x = 5 4设一元二次方程ax2bxc0 (a0)的两个根分别为x1,x2 则x1 +x2= ;x1 x2= _ 例如:方程2x2+3x 2=0的两个根分别为x1,x2 则x1+x2= ;x1 x2= _ 交流提高请同学们之间相互交流,形成本章的知识结构。典例精析例1:已知关于x的一元二次方程(m2)x23xm24=0有一个解是0,求m的值. 例2:解下列方程:(1)2 x2x60; (2) x24x2;(3)5x24x120; (4)4x24x1018x. (5)(x1)(x1)(6)(2x1)22(2x1). 例3:已知关于x的一元二次方程(m1)x2 (2m+1)x+m=0,当m取何值时:(1)它没有实数根。(2)它有两个相等的实数根,并求出它的根。(3)它有两个不相等的实数根。 巩固练习1关于x的方程mx23x=x2mx+2是一元二次方程的条件是 2已知关于x的方程x2pxq0的两个根是0和3,求p和q的值3m取什么值时,关于x的方程2x2-(m2)x2m20有两个相等的实数根?求出这时方程的根.4解下列方程:(1) x2(1)x0;(2)(x2)(x5)1 ;(3)3(x5)22(5x)。5.说明不论m取何值,关于x的方程(x1)(x2)m2总有两个不相等的实数根。6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 班组安全生产培训感悟课件
- 班组安全生产培训制度课件
- 高端旅游市场演变-洞察与解读
- 2025年安庆职业技术学院高层次人才引进7人模拟试卷及答案详解(历年真题)
- 班组安全教育培训方案课件
- 花青素与记忆增强-洞察与解读
- 2025年“才聚齐鲁成就未来”山东泰安市泰山财产保险股份有限公司河南分公司社会招聘4人考前自测高频考点模拟试题及答案详解1套
- 生物饵料高效利用-洞察与解读
- 2025年度洛阳市考古研究院引进急需短缺专业人才4名模拟试卷附答案详解
- 2025广西柳州市柳江区投资集团有限公司下属子公司柳州市堡鑫建筑工程有限公司招聘工作人员模拟试卷(含答案详解)
- 2025项目管理考试题及答案
- 医院手术室质控体系构建与管理
- 喷涂基础知识培训课件
- 2025年驻外内聘考试题库
- 中铁四局工作汇报与战略规划
- 矿山测量基础知识课件
- 【《上市公司财务造假分析的国内外文献综述》5100字】
- 企业融资培训课件
- 2025年抗菌药物合理使用培训
- 杜仲种植深加工项目可行性研究报告-备案立项
- 2025年乡村文化旅游发展报告:文旅融合下的乡村旅游生态旅游规划与实施研究
评论
0/150
提交评论