




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1.3空间向量基本定理课时目标1.掌握空间向量基本定理.2.能正确选择合适基底,并正确表示空间向量1空间向量基本定理如果三个向量e1,e2,e3不共面,那么对空间任一向量p,存在惟一的有序实数组(x,y,z),使得_由此可知,如果三个向量e1,e2,e3不共面,那么空间的每一个向量组成的集合就是_这个集合可看作是由向量e1,e2,e3生成的,我们把_叫做空间的一个基底,_都叫做基向量空间任何三个不共面的向量都可构成空间的一个基底2正交基底与单位正交基底如果空间一个基底的三个基向量是_,那么这个基底叫做正交基底,当一个正交基底的三个基向量都是_时,称这个基底为单位正交基底,通常用_表示3推论设o,a,b,c是_的四点,则对空间任意一点p,都存在惟一的有序实数组(x,y,z),使得_一、填空题1若存在实数x、y、z,使xyz成立,则下列判断正确的是_(写出正确的序号)对于某些x、y、z的值,向量组,不能作为空间的一个基底;对于任意的x、y、z的值,向量组,都不能作为空间的一个基底;对于任意的x、y、z的值,向量组,都能作为空间的一个基底;根据已知条件,无法作出相应的判断2.设o-abc是四面体,g1是abc的重心,g是og1上的一点,且 xyz,则(x,y,z)为_3在以下3个命题中,真命题的个数是_三个非零向量a,b,c不能构成空间的一个基底,则a,b,c共面;若两个非零向量a,b与任何一个向量都不能构成空间的一个基底,则a,b共线;若a,b是两个不共线向量,而cab(,r且0),则a,b,c构成空间的一个基底4若a,b,c是空间的一个基底,则下列各组中能构成空间一个基底的是_(写出符合要求的序号)a,2b,3c;ab,bc,ca;a2b,2b3c,3a9c;abc,b,c.5已知点a在基底a,b,c下的坐标为(8,6,4),其中aij,bjk,cki,则点a在基底i,j,k下的坐标是_6下列结论中,正确的是_(写出所有正确的序号)若a、b、c共面,则存在实数x,y,使axbyc;若a、b、c不共面,则不存在实数x,y,使axbyc;若a、b、c共面,b、c不共线,则存在实数x,y,使axbyc;若axbyc,则a、b、c共面7.如图所示,空间四边形oabc中,a, b,c,点m在oa上且omma,bnnc,则_.8命题:若a与b共线,b与c共线,则a与c共线;向量a、b、c共面,则它们所在的直线也共面;若a与b共线,则存在惟一的实数,使ba.上述命题中的真命题的个数是_二、解答题9已知向量a,b,c是空间的一个基底,那么向量ab,bc,ca能构成空间的一个基底吗?为什么?10.如图所示,在长方体abcda1b1c1d1中,o为ac的中点(1)化简:;(2)设e是棱dd1上的点且,若xyz,试求x、y、z的值能力提升11.如图所示,已知平行六面体abcdabcd.求证:2.12.如图所示,空间四边形oabc中,g、h分别是abc 、obc的重心,设a, b,c,试用向量a、b、c表示向量.1空间的一个基底是空间任意三个不共面的向量,空间的基底可以有无穷多个一个基底是不共面的三个向量构成的一个向量组,一个基向量指一个基底的某一个向量2利用向量解决立体几何中的一些问题时,其一般思路是将要解决的问题用向量表示,用已知向量表示所需向量,对表示出的所需向量进行运算,最后再将运算结果转化为要解决的问题31.3空间向量基本定理知识梳理1pxe1ye2ze3p|pxe1ye2ze3,x,y,zre1,e2,e3e1,e2,e32两两互相垂直单位向量i,j,k3不共面xyz作业设计1解析当,共面时,则,共面,故不能构成空间的一个基底2(,)解析因为()()()(),而xyz,所以x,y,z.32解析命题,是真命题,命题是假命题4解析3(a2b)3(2b3c)(3a9c)0,3a9c3(a2b)3(2b3c),即三向量3a9c,a2b,2b3c共面5(12,14,10)解析设点a在基底a,b,c下对应的向量为p,则p8a6b4c8i8j6j6k4k4i12i14j10k,故点a在基底i,j,k下的坐标为(12,14,10)6解析要注意共面向量定理给出的一个充要条件所以第个命题正确但定理的应用又有一个前提:b、c是不共线向量,否则即使三个向量a、b、c共面,也不一定具有线性关系,故不正确,正确7abc809解假设ab,bc,ca共面,则存在实数、使得ab(bc)(ca),abba()c.a,b,c为基底,a,b,c不共面此方程组无解ab,bc,ca不共面ab,bc,ca可以作为空间的一个基底10解(1),().
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 招聘师工艺创新考核试卷及答案
- 回转窑球团焙烧工设备调试考核试卷及答案
- 重介质分选工三级安全教育(班组级)考核试卷及答案
- 2025年肺活量测试仪行业研究报告及未来行业发展趋势预测
- 2025年电子蜂鸣器行业研究报告及未来行业发展趋势预测
- 2025年2,3-二氯马来酸酐行业研究报告及未来行业发展趋势预测
- 2025年钢粉行业研究报告及未来行业发展趋势预测
- 2025年超级不锈钢行业研究报告及未来行业发展趋势预测
- 烟机设备操作工操作考核试卷及答案
- 异丙醇装置操作工专业知识考核试卷及答案
- 2024年二次离婚起诉状范文
- 北师大版高中英语让学生自由飞翔
- (2024)新课标一年级语文上册 我上学了 第2课时 我爱我们的祖国 课件
- 《跨境直播运营》课件-跨境电商交易平台直播
- T-CCSAS014-2022《化工企业承包商安全管理指南》
- 液化气店转让合同范本
- 医学教育中的全科医学与专科医学的比较与协同
- 肠梗阻小讲课
- 《小儿支气管肺炎》课件
- 食材配送沟通服务方案
- 机房建设清单
评论
0/150
提交评论