




免费预览已结束,剩余5页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学案14导数在研究函数中的应用0导学目标: 1.了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(多项式函数一般不超过三次).2.了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(多项式函数一般不超过三次)及最大(最小)值自主梳理1导数和函数单调性的关系:(1)若f(x)0在(a,b)上恒成立,则f(x)在(a,b)上是_函数,f(x)0的解集与定义域的交集的对应区间为_区间;(2)若f(x)0在(a,b)上恒成立,则f(x)在(a,b)上是_函数,f(x)1.(1)讨论函数f(x)的单调性;(2)证明:若a1.多角度审题(1)先求导,根据参数a的值进行分类讨论;(2)若x1x2,结论等价于f(x1)x1f(x2)x2,若x1x2,问题等价于f(x1)x1f(x2)x2,故问题等价于yf(x)x是单调增函数【答题模板】(1)解f(x)的定义域为(0,)f(x)xa.2分若a11,即a2时,f(x).故f(x)在(0,)上单调递增若a11,故1a2时,则当x(a1,1)时,f(x)0,故f(x)在(a1,1)上单调递减,在(0,a1),(1,)上单调递增若a11,即a2时,同理可得f(x)在(1,a1)上单调递减,在(0,1),(a1,)上单调递增6分(2)证明考虑函数g(x)f(x)xx2ax(a1)ln xx.则g(x)x(a1)2(a1)1(1)2.由于1a0,即g(x)在(0,)上单调递增,从而当x1x20时,有g(x1)g(x2)0,即f(x1)f(x2)x1x20,故1.10分当0x11.综上,若a1.12分【突破思维障碍】(1)讨论函数的单调区间的关键是讨论导数大于0或小于0的不等式的解集,一般就是归结为一个一元二次不等式的解集的讨论,在能够通过因式分解得到导数等于0的根的情况下,根的大小是分类的标准;(2)利用导数解决不等式问题的主要方法就是构造函数,通过函数研究函数的性质进而解决不等式问题1求可导函数单调区间的一般步骤和方法:(1)确定函数f(x)的定义域;(2)求f(x),令f(x)0,求出它在定义域内的一切实根;(3)把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;(4)确定f(x)在各个开区间内的符号,根据f(x)的符号判定函数f(x)在每个相应小开区间内的增减性2可导函数极值存在的条件:(1)可导函数的极值点x0一定满足f(x0)0,但当f(x1)0时,x1不一定是极值点如f(x)x3,f(0)0,但x0不是极值点(2)可导函数yf(x)在点x0处取得极值的充要条件是f(x0)0,且在x0左侧与右侧f(x)的符号不同3函数的最大值、最小值是比较整个定义区间的函数值得出来的,函数的极值是比较极值点附近的函数值得出来的函数的极值可以有多有少,但最值只有一个,极值只能在区间内取得,最值则可以在端点取得,有极值的未必有最值,有最值的未必有极值,极值可能成为最值,最值只要不在端点必定是极值4求函数的最值以导数为工具,先找到极值点,再求极值和区间端点函数值,其中最大的一个是最大值,最小的一个是最小值 (满分:75分)一、选择题(每小题5分,共25分)1(2011大连模拟)设f(x),g(x)是r上的可导函数,f(x)、g(x)分别为f(x)、g(x)的导函数,且f(x)g(x)f(x)g(x)0,则当axf(b)g(x)bf(x)g(a)f(a)g(x)cf(x)g(x)f(b)g(b)df(x)g(x)f(a)g(a)2.函数f(x)的定义域为开区间(a,b),导函数f(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点 ()a1个b2个c3个d4个3(2011嘉兴模拟)若函数ya(x3x)在区间上为减函数,则a的取值范围是 ()aa0b1a1d0acmdm3bada0,求函数yf(x)在区间(a1,a1)内的极值答案 自主梳理1(1)增增(2)减减(3)增减2.(1)f(x)0f(x)0f(x)0(2)f(x)0f(x)0极大值极小值自我检测1c2.d3.c4.c518解析f(x)3x22axb,由题意即得a4,b11或a3,b3.但当a3时,f(x)3x26x30,故不存在极值,a4,b11,f(2)18.课堂活动区例1解题导引(1)一般地,涉及到函数(尤其是一些非常规函数)的单调性问题,往往可以借助导数这一重要工具进行求解函数在定义域内存在单调区间,就是不等式f(x)0或f(x)0,即(x22)ex0,ex0,x220,解得x0,x2(a2)xa0对x(1,1)都成立,即x2(a2)xa0对x(1,1)恒成立设h(x)x2(a2)xa只须满足,解得a.(3)若函数f(x)在r上单调递减,则f(x)0对xr都成立,即x2(a2)xaex0对xr都成立ex0,x2(a2)xa0对xr都成立(a2)24a0,即a240,这是不可能的故函数f(x)不可能在r上单调递减若函数f(x)在r上单调递增,则f(x)0对xr都成立,即x2(a2)xaex0对xr都成立ex0,x2(a2)xa0对xr都成立而x2(a2)xa0不可能恒成立,故函数f(x)不可能在r上单调递增综上可知函数f(x)不可能是r上的单调函数变式迁移1解(1)由题意得f(x)3x22(1a)xa(a2),又,解得b0,a3或a1.(2)由f(x)0,得x1a,x2.又f(x)在(1,1)上不单调,即或解得或所以a的取值范围为(5,)(,1)例2解题导引本题研究函数的极值问题利用待定系数法,由极值点的导数值为0,以及极大值、极小值,建立方程组求解判断函数极值时要注意导数为0的点不一定是极值点,所以求极值时一定要判断导数为0的点左侧与右侧的单调性,然后根据极值的定义判断是极大值还是极小值解(1)由题意可知f(x)3ax2b.于是,解得故所求的函数解析式为f(x)x34x4.(2)由(1)可知f(x)x24(x2)(x2)令f(x)0得x2或x2,当x变化时,f(x),f(x)的变化情况如下表所示:x(,2)2(2,2)2(2,)f(x)00f(x)单调递增极大值单调递减极小值单调递增因此,当x2时,f(x)有极大值,当x2时,f(x)有极小值,所以函数的大致图象如图,故实数k的取值范围为(,)变式迁移2解(1)f(x)2bx1,.解得a,b.(2)f(x)()1.函数定义域为(0,),列表x(0,1)1(1,2)2(2,)f(x)00f(x)单调递减极小值单调递增极大值单调递减x1是f(x)的极小值点,x2是f(x)的极大值点例3解题导引设函数f(x)在a,b上连续,在(a,b)内可导,求f(x)在a,b上的最大值和最小值的步骤:(1)求函数yf(x)在(a,b)内的极值(2)将函数yf(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值解(1)由f(x)x3ax2bxc,得f(x)3x22axb,当x1时,切线l的斜率为3,可得2ab0;当x时,yf(x)有极值,则f0,可得4a3b40.由解得a2,b4,又切点的横坐标为x1,f(1)4.1abc4.c5.(2)由(1),得f(x)x32x24x5,f(x)3x24x4.令f(x)0,得x2或x,f(x)0的解集为,即为f(x)的减区间3,2)、是函数的增区间又f(3)8,f(2)13,f,f(1)4,yf(x)在3,1上的最大值为13,最小值为.变式迁移3解(1)由题意得f(x)3ax22xb.因此g(x)f(x)f(x)ax3(3a1)x2(b2)xb.因为函数g(x)是奇函数,所以g(x)g(x),即对任意实数x,有a(x)3(3a1)(x)2(b2)(x)bax3(3a1)x2(b2)xb,从而3a10,b0,解得a,b0,因此f(x)的表达式为f(x)x3x2.(2)由(1)知g(x)x32x,所以g(x)x22,令g(x)0,解得x1,x2,则当x时,g(x)0,从而g(x)在区间(,),(,)上是减函数;当x0,从而g(x)在区间(,)上是增函数由前面讨论知,g(x)在区间1,2上的最大值与最小值只能在x1,2时取得,而g(1),g(),g(2).因此g(x)在区间1,2上的最大值为g(),最小值为g(2).课后练习区1c2.a3.a4.a5.b63解析f(x)(),又x1为函数的极值,f(1)0.121a0,即a3.7解析观察函数f(x)的导函数f(x)的图象,由单调性、极值与导数值的关系直接判断8(,3)(6,)解析f(x)3x22mxm60有两个不等实根,则4m212(m6)0,m6或m3.9解f(x)(),由f(x)0得x2,1.(4分)当x(,2)时f(x)0,故x2是函数的极小值点,故f(x)的极小值为f(2);(8分)当x(2,1)时f(x)0,当x(1,)时f(x)0,得x2或x0,故f(x)的单调递增区间是(,0)(2,);由f(x)0,得0x2, 故f(x)的单调递减区间是(0,2)(8分)(2)由(1)得f(x)3x(x2),令f(x)0,得x0或x2.当x变化时,f(x)、f(x)的变化情况如下表:x(,0)0(0,2)2(2,)f(x)00f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 逻辑思维训练课程教案:逻辑推理与论证方法
- 长方体结构认识与性质学习教案
- 电力系统运行与维护习题集
- 音乐分析考试试题及答案
- 医院停水考试试题及答案
- 医院库房考试试题及答案
- 六一俱乐部活动方案
- 六一光影活动方案
- 六一创意夜晚活动方案
- 六一宠物活动策划方案
- 军营超市环境卫生管理方案
- 快乐海豚课件教学课件
- 国开《农村社会学》形考作业1-4参考答案
- 电子烟质量管理手册
- 城市数字底座CIM数字城市发展方向与技术
- 财政学学习通题库及答案
- 2023-2024学年全国初二下历史人教版期末试卷(含答案解析)
- 形势与政策智慧树知到答案2024年西北师范大学
- 2024-2030年中国射击场行业市场发展趋势与前景展望战略分析报告
- 施工现场建筑垃圾减量化专项方案
- 高三数学一轮复习题型与战法精准训练(新高考专用)7.2.2点线面的位置关系(针对练习)(原卷版+解析)
评论
0/150
提交评论