




免费预览已结束,剩余8页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
11.1随机事件的概率1随机事件和确定事件(1)在条件s下,一定会发生的事件,叫做相对于条件s的必然事件(2)在条件s下,一定不会发生的事件,叫做相对于条件s的不可能事件(3)必然事件与不可能事件统称为相对于条件s的确定事件(4)在条件s下可能发生也可能不发生的事件,叫做相对于条件s的随机事件(5)确定事件和随机事件统称为事件,一般用大写字母a,b,c表示2频率与概率(1)在相同的条件s下重复n次试验,观察某一事件a是否出现,称n次试验中事件a出现的次数na为事件a出现的频数,称事件a出现的比例fn(a)为事件a出现的频率(2)对于给定的随机事件a,如果随着试验次数的增加,事件a发生的频率fn(a)稳定在某个常数上,把这个常数记作p(a),称为事件a的概率,简称为a的概率3事件的关系与运算定义符号表示包含关系如果事件a发生,则事件b一定发生,这时称事件b包含事件a(或称事件a包含于事件b)ba(或ab)相等关系若ba且abab并事件(和事件)若某事件发生当且仅当事件a发生或事件b发生,称此事件为事件a与事件b的并事件(或和事件)ab(或ab)交事件(积事件)若某事件发生当且仅当事件a发生且事件b发生,则称此事件为事件a与事件b的交事件(或积事件)ab(或ab)互斥事件若ab为不可能事件,则称事件a与事件b互斥ab对立事件若ab为不可能事件,ab为必然事件,那么称事件a与事件b互为对立事件abp(ab)p(a)p(b)14.概率的几个基本性质(1)概率的取值范围:0p(a)1.(2)必然事件的概率p(e)1.(3)不可能事件的概率p(f)0.(4)互斥事件概率的加法公式如果事件a与事件b互斥,则p(ab)p(a)p(b)若事件b与事件a互为对立事件,则p(a)1p(b)1判断下面结论是否正确(请在括号中打“”或“”)(1)事件发生频率与概率是相同的()(2)随机事件和随机试验是一回事()(3)在大量重复试验中,概率是频率的稳定值()(4)两个事件的和事件是指两个事件都得发生()2一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()a至多有一次中靶 b两次都中靶c只有一次中靶 d两次都不中靶答案d3某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为()a0.5 b0.3 c0.6 d0.9答案a解析依题意知,此射手在一次射击中不超过8环的概率为1(0.20.3)0.5.4下列事件中,随机事件为_,必然事件为_(填序号)冬去春来某班一次数学测试,及格率低于75%体育彩票某期的特等奖号码三角形内角和为360骑车到十字路口遇到交警答案5给出下列三个命题,其中正确的命题有_个有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是;随机事件发生的频率就是这个随机事件发生的概率答案0解析错,不一定是10件次品;错,是频率而非概率;错,频率不等于概率,这是两个不同的概念.题型一随机事件的关系例1某城市有甲、乙两种报纸供居民们订阅,记事件a为“只订甲报纸”,事件b为“至少订一种报纸”,事件c为“至多订一种报纸”,事件d为“不订甲报纸”,事件e为“一种报纸也不订”判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件(1)a与c;(2)b与e;(3)b与c;(4)c与e.思维启迪判断事件之间的关系可以紧扣事件的分类,结合互斥事件,对立事件的定义进行分析解(1)由于事件c“至多订一种报纸”中有可能“只订甲报纸”,即事件a与事件c有可能同时发生,故a与c不是互斥事件(2)事件b“至少订一种报纸”与事件e“一种报纸也不订”是不可能同时发生的,故b与e是互斥事件由于事件b不发生可导致事件e一定发生,且事件e不发生会导致事件b一定发生,故b与e还是对立事件(3)事件b“至少订一种报纸”中有这些可能:“只订甲报纸”、“只订乙报纸”、“订甲、乙两种报纸”,事件c“至多订一种报纸”中有这些可能:“一种报纸也不订”、“只订甲报纸”、“只订乙报纸”,由于这两个事件可能同时发生,故b与c不是互斥事件(4)由(3)的分析,事件e“一种报纸也不订”是事件c的一种可能,即事件c与事件e有可能同时发生,故c与e不是互斥事件思维升华对互斥事件要把握住不能同时发生,而对于对立事件除不能同时发生外,其并事件应为必然事件,这些也可类比集合进行理解,具体应用时,可把所有试验结果写出来,看所求事件包含哪几个试验结果,从而断定所给事件的关系对飞机连续射击两次,每次发射一枚炮弹设a两次都击中飞机,b两次都没击中飞机,c恰有一弹击中飞机,d至少有一弹击中飞机,其中彼此互斥的事件是_,互为对立事件的是_答案a与b,a与c,b与c,b与db与d解析设i为对飞机连续射击两次所发生的所有情况,因为ab,ac,bc,bd.故a与b,a与c,b与c,b与d为彼此互斥事件,而bd,bdi,故b与d互为对立事件题型二随机事件的频率与概率例2某企业生产的乒乓球被2012年伦敦奥运会指定为乒乓球比赛专用球,目前有关部门对某批产品进行了抽样检测,检查结果如下表所示:抽取球数n501002005001 0002 000优等品数m45921944709541 902优等品频率(1)计算表中乒乓球优等品的频率;(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位)思维启迪可以利用公式计算频率,在试验次数很大时,用频率来估计概率解(1)依据公式f,计算出表中乒乓球优等品的频率依次是0.900,0.920,0.970,0.940,0.954,0.951.(2)由(1)知,抽取的球数n不同,计算得到的频率值不同,但随着抽取球数的增多,频率在常数0.950的附近摆动,所以质量检查为优等品的概率约为0.950.思维升华频率是个不确定的数,在一定程度上频率可以反映事件发生的可能性大小,但无法从根本上刻画事件发生的可能性大小但从大量重复试验中发现,随着试验次数的增多,事件发生的频率就会稳定于某一固定的值,该值就是概率某河流上的一座水力发电站,每年六月份的发电量y(单位:万千瓦时)与该河上游在六月份的降雨量x(单位:毫米)有关据统计,当x70时,y460;x每增加10,y增加5.已知近20年x的值为140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(1)完成如下的频率分布表:近20年六月份降雨量频率分布表降雨量70110140160200220频率(2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率解(1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个故近20年六月份降雨量频率分布表为降雨量70110140160200220频率(2)由已知可得y425,故p(“发电量低于490万千瓦时或超过530万千瓦时”)p(y530)p(x210)p(x70)p(x110)p(x220).故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为.题型三互斥事件、对立事件的概率例3某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个设1张奖券中特等奖、一等奖、二等奖的事件分别为a、b、c,求:(1)p(a),p(b),p(c);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率思维启迪明确事件的特征、分析事件间的关系,根据互斥事件或对立事件概率公式求解解(1)p(a),p(b),p(c).故事件a,b,c的概率分别为,.(2)1张奖券中奖包含中特等奖、一等奖、二等奖设“1张奖券中奖”这个事件为m,则mabc.a、b、c两两互斥,p(m)p(abc)p(a)p(b)p(c).故1张奖券的中奖概率为.(3)设“1张奖券不中特等奖且不中一等奖”为事件n,则事件n与“1张奖券中特等奖或中一等奖”为对立事件,p(n)1p(ab)1.故1张奖券不中特等奖且不中一等奖的概率为.思维升华(1)解决此类问题,首先应结合互斥事件和对立事件的定义分析出是不是互斥事件或对立事件,再选择概率公式进行计算(2)求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的求和公式计算;二是间接求法,先求此事件的对立事件的概率,再用公式p(a)1p()计算袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是,黑球或黄球的概率是,绿球或黄球的概率也是.求从中任取一球,得到黑球、黄球和绿球的概率分别是多少?解从袋中任取一球,记事件“得到红球”“得到黑球”“得到黄球”“得到绿球”分别为a,b,c,d,则事件a,b,c,d彼此互斥,所以有p(bc)p(b)p(c),p(dc)p(d)p(c),p(bcd)p(b)p(c)p(d)1p(a)1,解得p(b),p(c),p(d).故从中任取一球,得到黑球、黄球和绿球的概率分别是,.用正难则反思想求互斥事件的概率典例:(12分)(2012湖南)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)x3025y10结算时间(分钟/人)11.522.53已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率)思维启迪若某一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“正难则反”思想求解规范解答解(1)由已知得25y1055,x3045,所以x15,y20.2分该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1.9(分钟)6分(2)记a为事件“一位顾客一次购物的结算时间不超过2分钟”,a1,a2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得p(a1),p(a2).9分p(a)1p(a1)p(a2)1.11分故一位顾客一次购物的结算时间不超过2分钟的概率为.12分温馨提醒(1)要准确理解题意,善于从图表信息中提炼数据关系,明确数字特征的含义(2)正确判定事件间的关系,善于将a转化为互斥事件的和或对立事件,切忌盲目代入概率加法公式易错提示:(1)对统计表的信息不理解,错求x,y难以用样本平均数估计总体(2)不能正确地把事件a转化为几个互斥事件的和或转化为bc的对立事件,导致计算错误.方法与技巧1对于给定的随机事件a,由于事件a发生的频率fn(a)随着试验次数的增加稳定于概率p(a),因此可以用频率fn(a)来估计概率p(a)2从集合角度理解互斥和对立事件从集合的角度看,几个事件彼此互斥,是指由各个事件所含的结果组成的集合彼此的交集为空集,事件a的对立事件所含的结果组成的集合,是全集中由事件a所含的结果组成的集合的补集失误与防范1正确认识互斥事件与对立事件的关系:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件2需准确理解题意,特别留心“至多”,“至少”,“不少于”等语句的含义.a组专项基础训练一、选择题1从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是 ()a至少有一个红球与都是红球b至少有一个红球与都是白球c至少有一个红球与至少有一个白球d恰有一个红球与恰有二个红球答案d2从一箱产品中随机地抽取一件,设事件a抽到一等品,事件b抽到二等品,事件c抽到三等品,且已知p(a)0.65,p(b)0.2,p(c)0.1,则事件“抽到的不是一等品”的概率为()a0.7 b0.65 c0.35 d0.3答案c解析事件“抽到的不是一等品”与事件a是对立事件,由于p(a)0.65,所以由对立事件的概率公式得“抽到的不是一等品”的概率为p1p(a)10.650.35.3某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽验一只是正品(甲级)的概率为()a0.95 b0.97 c0.92 d0.08答案c解析记抽验的产品是甲级品为事件a,是乙级品为事件b,是丙级品为事件c,这三个事件彼此互斥,因而抽验的产品是正品(甲级)的概率为p(a)1p(b)p(c)15%3%92%0.92,故选c.4在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是,那么概率是的事件是()a至多有一张移动卡 b恰有一张移动卡c都不是移动卡 d至少有一张移动卡答案a解析至多有一张移动卡包含“一张移动卡,一张联通卡”“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件,故选a.5甲、乙两人下棋,两人和棋的概率是,乙获胜的概率是,则乙不输的概率是()a. b. c. d.答案a解析乙不输包含两种情况:一是两人和棋,二是乙获胜,故所求概率为.二、填空题6在200件产品中,有192件一级品,8件二级品,则下列事件:在这200件产品中任意选出9件,全部是一级品;在这200件产品中任意选出9件,全部是二级品;在这200件产品中任意选出9件,不全是二级品其中_是必然事件;_是不可能事件;_是随机事件答案7口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率为0.42,摸出白球的概率为0.28,若红球有21个,则黑球有_个答案15解析10.420.280.30,210.4250,500.3015.8已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果经随机模拟产生了如下20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为_答案0.25解析20组随机数中表示三次投篮恰好有两次命中的是191,271,932,812,393,其频率为0.25,以此估计该运动员三次投篮恰有两次命中的概率为0.25.三、解答题9黄种人群中各种血型的人所占的比如下表所示:血型ababo该血型的人所占比/%2829835已知同种血型的人可以输血,o型血可以输给任一种血型的人,任何人的血都可以输给ab型血的人,其他不同血型的人不能互相输血小明是b型血,若小明因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?解(1)对任一人,其血型为a,b,ab,o型血的事件分别记为a,b,c,d,它们是互斥的由已知,有p(a)0.28,p(b)0.29,p(c)0.08,p(d)0.35.因为b,o型血可以输给b型血的人,故“可以输给b型血的人”为事件bd.根据互斥事件的加法公式,有p(bd)p(b)p(d)0.290.350.64.(2)方法一由于a,ab型血不能输给b型血的人,故“不能输给b型血的人”为事件ac,且p(ac)p(a)p(c)0.280.080.36.方法二因为事件“其血可以输给b型血的人”与事件“其血不能输给b型血的人”是对立事件,故由对立事件的概率公式,有p(ac)p(bd)1p(bd)10.640.36.10对一批衬衣进行抽样检查,结果如表:抽取件数n50100200500600700800次品件数m021227273540次品率(1)求次品出现的频率(次品率);(2)记“任取一件衬衣是次品”为事件a,求p(a);(3)为了保证买到次品的顾客能够及时更换,销售1 000件衬衣,至少需进货多少件?解(1)次品率依次为0,0.02,0.06,0.054,0.045,0.05,0.05.(2)由(1)知,出现次品的频率在0.05附近摆动,故p(a)0.05.(3)设进衬衣x件,则x(10.05)1 000,解得x1 053,故至少需进货1 053件b组专项能力提升1甲:a1、a2是互斥事件;乙:a1、a2是对立事件那么()a甲是乙的充分但不必要条件b甲是乙的必要但不充分条件c甲是乙的充要条件d甲既不是乙的充分条件,也不是乙的必要条件答案b解析根据互斥事件和对立事件的概念可知互斥事件不一定是对立事件,对立事件一定是互斥事件2在一次随机试验中,彼此互斥的事件a、b、c、d的概率分别是0.2、0.2、0.3、0.3,则下列说法正确的是()aab与c是互斥事件,也是对立事件bbc与d是互斥事件,也是对立事件cac与bd是互斥事件,但不是对立事件da与bcd是互斥事件,也是对立事件答案d解析由于a,b,c,d彼此互斥,且abcd是一个必然事件,故其事件的关系可由如图所示的venn图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件故选d.3一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为,取得两个绿球的概率为,则取得两个同颜色的球的概率为_;至少取得一个红球的概率为_答案解析(1)由于“取得两个红球”与“取得两个绿球”是互斥事件,取得两个同色球,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为p.(2)由于事件a“至少取得一个红球”与事件b“取得两个绿球”是对立事件,则至少取得一个红球的概率为p(a)1p(b)1.4. 某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39、32、33个成员,一些成员参加了不止一个小组,具体情况如图所示现随机选取一个成员,他属于至少2个小组的概率是_,他属于不超过2个小组的概率是_答案解析“至少2个小组”包含“2个小组”和“3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 亚运会规则体系详解
- 认识劳动技术课
- 护士交班报告
- 燃烧系统的讲解与分析
- 西方文学流派发展脉络
- 如何提高医院患者服务质量优化体系
- 现代医学发展里程碑中的关键突破
- 商业概念设计汇报
- 无菌技术戴手套
- 退休人士职业咨询服务创新创业项目商业计划书
- 民族文化宫2025年公开招聘17人笔试模拟试题含答案详解
- 2025年幼儿园教师专业考试试题及答案书
- 2025秋新部编版一年级上册语文教学计划+教学进度表
- 2025年国家公务员考试行测真题及答案(完整版)
- 小型企业网络构建:VPN设置与配置详解
- 消化道内异物疑难病例讨论
- 2025年预防接种技能竞赛征集试题
- 道路运输安全生产法律法规有哪些
- 年度述职活动方案
- 抗衰老培训课件
- 肿瘤科讲课课件
评论
0/150
提交评论