试写出坡印廷定理的数学表示式.doc_第1页
试写出坡印廷定理的数学表示式.doc_第2页
试写出坡印廷定理的数学表示式.doc_第3页
试写出坡印廷定理的数学表示式.doc_第4页
试写出坡印廷定理的数学表示式.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1. 试写出坡印廷定理的数学表示式,并简要的说明其意义。(4分)解:用场的观点描述在电磁场中的能量守恒关系。说明从外部进入体积内的能量等于电磁储能的增加和热损耗能量。五、(16分)圆极化波从空气斜射到某种玻璃的边界平面上,如图所示,该入射波的坡印廷矢量均值的大小为,若反射波中只有线极化波存在。已知:平行极化波斜入射时,反射系数为 垂直极化波斜入射时,反射系数为。试求:1.入射角;2反射波的坡印廷矢量均值的大小; 3折射波的极化类型。解:圆极化波可以分解为两个等幅的、时间相位及空间相位都相差的线极化波;若分解后的线极化波中有一个垂直极化波,则另一个必然是平行极化波。只有平行极化波才可能发生全折射。调整入射角,使其等于布儒斯特角时,只有平行极化波产生全折射,反射波中就仅存在垂直极化波了。1. 时,反射波中仅有线极化波,应为:2. 利用垂直极化波的反射系数RN,求由于圆极化波的功率密度为两个等幅线极化波的功率密度之和,又知圆极化波的功率密度平均值为,即 ,其中为垂直极化入射波的幅度值。由于,则所以 3. 由于折射波中,既有平行极化波,又有垂直极化波,但二者的幅度已不相等,因此,折射波应为椭圆极化波。1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。 答矢量位;动态矢量位或。库仑规范与洛仑兹规范的作用都是限制的散度,从而使的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。1. 简述穿过闭合曲面的通量及其物理定义 是矢量A穿过闭合曲面S的通量或发散量。若 0,流出S面的通量大于流入的通量,即通量由S面内向外扩散,说明S面内有正源若 0,则流入S面的通量大于流出的通量,即通量向S面内汇集,说明S面内有负源。若=0,则流入S面的通量等于流出的通量,说明S面内无源。1. 试写出一般电流连续性方程的积分与微分形式 ,恒定电流的呢?一般电流; 恒定电流1. 试推导静电场的泊松方程。 解由 ,其中 , 为常数 泊松方程 1. 分离变量法的基本步骤有哪些? 答具体步骤是1、先假定待求的位函数由两个或三个各自仅含有一个坐标变量的乘积所组成。2、把假定的函数代入拉氏方程,使原来的偏微分方程转换为两个或三个常微分方程。解这些方程,并利用给定的边界条件决定其中待定常数和函数后,最终即可解得待求的位函数。 1. 叙述什么是镜像法?其关键和理论依据各是什么? 答镜像法是用等效的镜像电荷代替原来场问题的边界,其关键是确定镜像电荷的大小和位置,理论依据是唯一性定理。1. 由麦克斯韦方程组出发,导出点电荷的电场强度公式和泊松方程。 解 点电荷q产生的电场满足麦克斯韦方程和由得据散度定理,上式即为利用球对称性,得故得点电荷的电场表示式由于,可取,则得即得泊松方程1. 试简要说明导电媒质中的电磁波具有什么样的性质?(设媒质无限大)答导电媒质中的电磁波性质有电场和磁场垂直;振幅沿传播方向衰减 ;电场和磁场不同相;以平面波形式传播。 1. 已知同轴电缆的内外半径分别为 和 ,其间媒质的磁导率 为,且电缆长度, 忽略端部效应, 求电缆单位长度的外自感。 设电缆带有电流则 1. 如图所示,长直导线中载有电流 ,一矩形导线框位于其近旁,其两边与直线平行并且共面,求导线框中的感应电动势。2. 解载流导线产生的磁场强度的大小为穿过线框的磁通量线框中的感应电动势 参考方向为顺时针方向。1. 平行板空气电容器中,电位(其中 a、b、c 与 d 为常数), 则电场强度,电荷体密度1. 在静电场中,线性介质是指介质的参数不随_ 场量的量值变化_而改变, 各向 同性的线性介质是指介质的特性不随_场的方向变化_而变化的线性介质。1. 在电导率、介电常数 的导电媒质中,已知电场强度, 则在 时刻, 媒质中的传导电流密度;位移电流密度_1. 若两个相互靠近的线圈间插入一块无限大铁板,则两线圈各自的自感将_ 增大_,互感将_减小_。1. 一右旋圆极化波,电场振幅为,角频率为 ,相位系数为,沿 传播,则其电场强度的瞬时表示为_,磁场强度的瞬时表示为_。 1. 在分别位于 和 处的两块无限大的理想导体平板之间的空气中,时变电磁场的磁场强度 则两导体表面上的电流密度分别为_ _ 和_。 1. 时变电磁场中,根据方程_ ,可定义矢量位使,再根据方程_ ,可定义标量位,使1. 在电导率 和介电常数 的均匀媒质中,已知电磁场的电场强度,则当频率_ , 且时间 ,媒质中位移电流密度的大小与传导电流密度的大小相等。1. 在恒定磁场中,若令磁矢位 的散度等于零,则可以得到所满足的微分方程 。但若 的散度不为零,还能得到同样的微分方程吗? 不能 1. 图示一长直圆柱形电容器, 内、外圆柱导体间充满介电常数为 的电介质,当内圆柱导体充电到电压 后,拆去电压源,然后将 介质换成 的介质,则电容器单位长度的电容 将增加 倍。而两导体间的电场强度将是原来电场强度的 倍。 1. 毕奥沙伐定律( 必须在线性,均匀各向同性媒质中应用)1. 导电媒质中,已知电场强度,则媒质中位移电流密度的相位与传导电流密度的相位( 相差pi/2 )1. 根据恒定磁场中磁感应强度、磁场强度与磁化强度的定义可知,在各向同性媒质中:( ) 与 的方向一定一致, 的方向可能与一致,也可能与 相反1. 电源以外恒定电流场基本方程的微分形式说明它是(无散无旋场)1. 试确定静电场表达式 中,常数c 的值是(c=2)1. 电源以外恒定电流场基本方程的积分形式是( )2.讨论均匀平面波在无界空间传播时本征阻抗与波阻抗的区别。3.写出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论