


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数(二)章节第三章课题课型复习课教法讲练结合教学目标(知识、能力、教育)1.理解二次函数与一元二次方程之间的关系;2.会结合方程根的性质、一元二次方程根的判别式,判定抛物线与轴的交点情况;3.会利用韦达定理解决有关二次函数的问题。4.会利用二次函数的图象及性质解决有关几何问题。教学重点二次函数性质的综合运用教学难点二次函数性质的综合运用教学媒体学案教学过程【考点归纳】 1二次函数与一元二次方程的关系: (1)一元二次方程ax2+bx+c=0就是二次函数y=ax2+bx+c当函数y的值为0时的情况 (2)二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点;当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2bxc=0的根 (3)当二次函数y=ax2+bx+c的图象与 x轴有两个交点时,则一元二次方程y=ax2+bx+c有两个不相等的实数根;当二次函数y=ax2+bx+c的图象与x轴有一个交点时,则一元二次方程ax2bxc0有两个相等的实数根;当二次函数yax2+ bx+c的图象与 x轴没有交点时,则一元二次方程y=ax2+bx+c没有实数根 2.二次函数的应用: (1)二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大(小)值; (2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值3.解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等【题型预测】 1. 直线y=3x3与抛物线y=x2 x+1的交点的个数是( ) a0 b1 c2 d不能确定2. 函数的图象如图所示,那么关于x的方程的根的情况是( ) a有两个不相等的实数根; b有两个异号实数根 c有两个相等实数根; d无实数根3. 不论m为何实数,抛物线y=x2mxm2( ) a在x轴上方; b与x轴只有一个交点 c与x轴有两个交点; d在x轴下方4. 已知二次函数y =x2x6(1)求二次函数图象与坐标轴的交点坐标及顶点坐标;(2)画出函数图象;(3)观察图象,指出方程x2x6=0的解;(4)求二次函数图象与坐标轴交点所构成的三角形的面积.【典型题例剖析】 1. 已知二次函数y=x26x+8,求: (1)抛物线与x轴j轴相交的交点坐标; (2)抛物线的顶点坐标; (3)画出此抛物线图象,利用图象回答下列问题: 方程x2 6x8=0的解是什么? x取什么值时,函数值大于0? x取什么值时,函数值小于0? 解:(1)由题意,得x26x+8=0则(x2)(x4)= 0,x1=2,x2=4所以与x轴交点为(2,0)和(4,0)当x1=0时,y=8所以抛物线与y轴交点为(0,8); (2);抛物线的顶点坐标为(3,1) (3)如图所示由图象知,x26x+8=0的解为x1=2,x2=4当x2或x4时,函数值大于0;当2x4时,函数值小于02. 已知抛物线yx22x8, (1)求证:该抛物线与x轴一定有两个交点; (2)若该抛物线与x轴的两个交点分别为a、b,且它的顶点为p,求abp的面积 解:(1)证明:因为对于方程x22x8=0,其判别式=(-2)24(8)360,所以方程x22x8=0有两个实根,抛物线y= x22x8与x轴一定有两个交点; (2)因为方程x22x8=0有两个根为x1=2,x2=4,所以ab=| x1x2|6又抛物线顶点p的纵坐标yp =9,所以sabp=ab|yp|=27 【专题训练】1.如图所示,直线y=-2x+2与轴、轴分别交于点a、b,以线段ab为直角边在第一象限内作等腰直角abc,bac=90o,过c作cd轴,垂足为d(1)求点a、b的坐标和ad的长(2)求过b 、a、d三点的抛物线的解析式2.如图,在矩形abcd中,ab=6cm,bc=12cm,点p从点a出发,沿ab边向点b以1cm/s的速度移动,同时点q从点b出发,沿bc边向点c以2cm/s的速度移动,回答下列问题:(1) 设运动后开始第t(单位:s)时,五边形apqcd的面积为s(单位:cm2),写出s与t的函数关系式,并指出自变量t的取值范围(2)t为何值时s最小?求出s的最小值3. 如图,直线与轴、轴分别交于a、b两点,点p是线段ab的中点,抛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45725-2025农作物可见光-短波红外光谱反射率测量
- 2025年品牌管理与传播战略试卷及答案
- 2025年护理伦理与法律风险管理试题及答案
- 《现代文阅读技巧提升:高中语文阅读教案》
- 第一次独自面对困境的经历作文(15篇)
- 《世界历史纲要:初中历史课程教案》
- 《蒸汽机的发明及其影响:初中历史科技史教案》
- 感悟自然风光读后感13篇
- 2024年上海行知中学高一(下)第二次月考英语试题及答案
- 一次精彩的辩论赛记事作文13篇
- GB/T 41735-2022绿色制造激光表面清洗技术规范
- YS/T 223-2007硒
- GB/T 3098.8-2010紧固件机械性能-200 ℃~+700 ℃使用的螺栓连接零件
- GB/T 1503-2008铸钢轧辊
- GB/T 1228-2006钢结构用高强度大六角头螺栓
- GB/T 12237-2021石油、石化及相关工业用的钢制球阀
- 套管培训大纲课件
- 公路养护勘察设计工作大纲讲义
- 香丹注射液中吐温80的含量测定
- 拖延症主题班会课件
- 生产设备点检记录表
评论
0/150
提交评论