




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
容斥原理和抽屉原理是国家公务员考试行测科目数学运算部分的“常客”,了解此两种原理不仅可以提高做题效率,还可以提高自己的运算能力,扫平所有此类计算题。一、容斥原理在计数时,要保证无一重复,无一遗漏。为了使重叠部分不被重复计算,在不考虑重叠的情况下,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。1.容斥原理1两个集合的容斥原理如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。如图所示:公式:AB=A+B-AB总数=两个圆内的-重合部分的【例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?数学得满分人数A,语文得满分人数B,数学、语文都是满分人数AB,至少有一门得满分人数AB。AB=15+12-4=23,共有23人至少有一门得满分。2.容斥原理2三个集合的容斥原理如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。如图所示,灰色部分AB-ABC、BC-ABC、CA-ABC都被重复计算了1次,黑色部分ABC被重复计算了2次,因此总数ABC=A+B+C-(AB-ABC)-(BC-ABC)-(CA-ABC)-2ABC=A+B+C-AB-BC-CA+ABC。即得到:公式:ABC=A+B+C-AB-BC-CA+ABC总数=三个圆内的-重合两次的+重合三次的【例2】某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人?参加足球队A,参加排球队B,参加游泳队C,足球、排球都参加的AB,足球、游泳都参加的CA,排球、游泳都参加的BC,三项都参加的ABC。三项都参加的有ABC=ABC-A-B-C+AB+BC+CA=45-25-22-24+12+9+8=3人。3.用文氏图解题文氏图又称韦恩图,能够将逻辑关系可视化的示意图。从文氏图可清晰地看出集合间的逻辑关系、重复计算的次数,最适合描述3个集合的情况。【例3】某班有50 位同学参加期末考试,结果英文不及格的有15 人,数学不及格的有19 人,英文和数学都及格的有21 人。那么英文和数学都不及格的有( )人。A.4 B.5 C.13 D.17解析:如图所示,按英文及格、数学及格画2个圆圈,根据题干条件确定它们重叠。二、抽屉原理能利用抽屉原理来解决的问题称为抽屉问题。在行测考试数学运算中,考查抽屉原理问题时,题干通常有“至少,才能保证”字样。抽屉原理1将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品件数不少于2。(至少有2件物品在同一个抽屉)抽屉原理2将多于mn件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。(至少有m+1件物品在同一个抽屉)下面我们通过几个简单的例子来帮助理解这两个抽屉原理。【例1】将5件物品放到3个抽屉里,要想保证任一个抽屉的物品最少,只能每个抽屉放一件,有5件物品,放了3件,还剩5-31=2件,这两件只能分别放入两个抽屉中,这样物品最多的抽屉中也只有2件物品中公.教育版权。即当物品数比抽屉数多时,不管怎么放,总有一个抽屉至少有2件物品。【例2】将10件物品放到3个抽屉里呢?将22件物品放到5个抽屉里呢?同样,按照前面的思路,要想保证任一个抽屉的物品数都最少,那么只能先平均放。103=31,则先每个抽屉放3件,还剩余10-33=1件,随便放入一个抽屉中,则这个抽屉中的物品数为3+1=4件。225=42,则先每个抽屉放4件,还剩余22-45=2件,分别放入两个抽屉中,则这两个抽屉中的物品数为4+1=5件。即如果物体数大于抽屉数的m倍,那么至少有一个抽屉中的物品数不少于m+1。1.利用抽屉原理解题一般来说,求抽屉数、抽屉中的最多有几件物品时采用抽屉原理,其解题流程如下:(1)找出题干中物品对应的量;(2)合理构造抽屉(简单问题中抽屉明显,找出即可);(3)利用抽屉原理1、抽屉原理2解题。【例题1】外国讲星座,中国传统讲属相。请问在任意的37个中国人中至少有几个人的属相相同?A.3 B.4 C.5 D.6解析: 属相有12种,看成12个抽屉,则至少有一个抽屉有不少于=4个人,即至少有4个人属相相同,选B。2.考虑最差(最不利)情况抽屉问题所求多为极端情况,即从最差的情况考虑。对于“一共有n个抽屉,要有(取)多少件物品,才能保证至少有一个抽屉中有m个物体”,即求物品总数时,考虑最差情况这一方法的使用非常有效。具体思路如下:最差情况是尽量不能满足至少有一个抽屉中有m个物品,因此只能将物品均匀放入n个抽屉中。当物品总数=n(m-1)时,每个抽屉中均有m-1个物品,此时再多1个,即可保证有1个抽屉中有m个物品。因此物品总数为n(m-1)+1。【例题2】从一副完整的扑克牌中,至少抽出多少张牌,才能保证至少有6张牌的花色相同?A.21 B.22 C.23 D.24解析:此题答案为C。一副完整的扑克牌包括大王、小王;红桃、方块、黑桃、梅花各13张。至少抽出多少张牌求取物品的件数,考虑最差情况中公.教育版权。要求6张牌的花色相同,最差情况即红桃、方块、黑桃、梅花各抽出5张,再加上大王、小王,此时共取出了45+2=22张,此时若再取一张,则一定有一种花色的牌有6张。即至少取出23张牌,才能保证至少6张牌的花色相同。牛吃草问题常用到四个基本公式,分别是:(1)草的生长速度(对应的牛头数吃的较多天数相应的牛头数吃的较少天数)(吃的较多天数吃的较少天数);(2)原有草量牛头数吃的天数草的生长速度吃的天数;(3)吃的天数原有草量(牛头数草的生长速度);(4)牛头数原有草量吃的天数草的生长速度。这四个公式是解决牛吃草问题的基础。一般设每头牛每天吃草量不变,设为1,解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。例1一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,同样一片牧场,牛23头,9天把草吃尽。如果有牛21头,几天能把草吃尽?摘录条件:27头6天原有草+6天生长草23头9天原有草+9天生长草21头?天原有草+?天生长草小学解答:解答这类问题关键是要抓住牧场青草总量的变化。设1头牛1天吃的草为1,由条件可知,前后两次青草的问题相差为239-276=45。为什么会多出这45呢?这是第二次比第一次多的那(9-6)3天生长出来的,所以每天生长的青草为453=15现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃。由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(27-15)6=72那么:第一次吃草量276=162第二次吃草量239=207每天生长草量453=15原有草量(27-15)6=72或162-156=7221头牛分两组,15头去吃生长的草,其余6头去吃原有的草那么726=12(天)初中解答:假设原来有的草为x份,每天长出来的草为y份,每头牛每天吃草1份。那么可以列方程:x+6y=276x+9y=239解得x=72,y=15若放21头牛,设n天可以吃完,则:72+15n=21nn=12例2一水库原有存水量一定,河水每天入库。5台抽水机连续20天抽干,6台同样的抽水机连续15天可抽干,若要6天抽干,要多少台同样的抽水机?摘录条件:5台20天原有水+20天入库量6台15天原有水+15天入库量?台6天原有水+6天入库量小学解答:设1台1天抽水量为1,第一次总量为520=100,第二次总量为615=90每天入库量(100-90)(20-15)=220天
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度租赁担保合同范本大全
- 2025版租赁市场房产租赁与转租服务合同
- 二零二五年度社区共享车位租赁合同模板:低碳出行倡导
- 2025版在线学习就读协议书1
- 二零二五年度精装房老旧设施更新装修工程合同
- 2024年上饶市广丰区事业单位选调工作人员真题
- 2025版二手房购房定金合同适用于海外购房需求
- 二零二五年度化妆品行业产业链金融服务合同
- 2025版电子信息设备融资租赁委托合同样本
- 2025年范文合同作废说明模板:解除合同的法律依据与操作要点
- 生物多样性保护与利用专项债项目可行性研究报告
- 吊桥浮桥安全管理制度
- T/CCSAS 023-2022危险化学品企业紧急切断阀设置和使用规范
- 员工签署自愿离职协议书
- 妇科护理小创新
- 增资扩股对赌协议书
- 第一届全国技能大赛贵州选拔赛电工样题
- 药店聘用执业药师合同书
- 【必学】60首常用经方精讲
- (2025)初级保育员理论知识考试题及答案
- 2025年职业道德试题库及答案
评论
0/150
提交评论