[学子教育]2009年全国中考数学压轴题1(修订版).doc_第1页
[学子教育]2009年全国中考数学压轴题1(修订版).doc_第2页
[学子教育]2009年全国中考数学压轴题1(修订版).doc_第3页
[学子教育]2009年全国中考数学压轴题1(修订版).doc_第4页
[学子教育]2009年全国中考数学压轴题1(修订版).doc_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2009年全国中考数学分类试题-综合题压轴题汇编1教师答案版1(09安徽省卷)八、(本题满分14分)23已知某种水果的批发单价与批发量的函数关系如图(1)所示金额w(元)O批发量m(kg)300200100204060(1)请说明图中、两段函数图象的实际意义【解】O60204批发单价(元)5批发量(kg)第23题图(1)O6240日最高销量(kg)80零售价(元)第23题图(2)48(6,80)(7,40)(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果【解】(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大【解】23(1)解:图表示批发量不少于20kg且不多于60kg的该种水果,金额w(元)O批发量m(kg)300200100204060240可按5元/kg批发;3分图表示批发量高于60kg的该种水果,可按4元/kg批发3分(2)解:由题意得:,函数图象如图所示7分由图可知资金金额满足240w300时,以同样的资金可批发到较多数量的该种水果8分(3)解法一:设当日零售价为x元,由图可得日最高销量当m60时,x6.5由题意,销售利润为12分当x6时,此时m80即经销商应批发80kg该种水果,日零售价定为6元/kg,当日可获得最大利润160元14分解法二:设日最高销售量为xkg(x60)则由图日零售价p满足:,于是销售利润12分当x80时,此时p6即经销商应批发80kg该种水果,日零售价定为6元/kg,当日可获得最大利润160元14分2(09北京市卷)24.在中,过点C作CECD交AD于点E,将线段EC绕点E逆时针旋转得到线段EF(如图1)(1)在图1中画图探究:当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转得到线段EC1.判断直线FC1与直线CD的位置关系,并加以证明;当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E 逆时针旋转得到线段EC2.判断直线C1C2与直线CD的位置关系,画出图形并直接写出你的结论.(2)若AD=6,tanB=,AE=1,在的条件下,设CP1=,S=,求与之间的函数关系式,并写出自变量的取值范围.3(09北京市卷)25.如图,在平面直角坐标系中,三个机战的坐标分别为,延长AC到点D,使CD=,过点D作DEAB交BC的延长线于点E.(1)求D点的坐标;(2)作C点关于直线DE的对称点F,分别连结DF、EF,若过B点的直线将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;(3)设G为y轴上一点,点P从直线与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短。(要求:简述确定G点位置的方法,但不要求证明)4(09福建福州)21(满分12分)如图9,等边边长为4,是边上动点,于H,过作,交线段于点,在线段上取点,使。设。(1) 请直接写出图中与线段相等的两条线段(不再另外添加辅助线);(2) 是线段上的动点,当四边形是平行四边形时,求 的面积(用含的代数式表示);(3) 当(2)中 的面积最大值时,以E为圆心,为半径作圆,根据E与此时四条边交点的总个数,求相应的的取值范围。解:()、BF三条线段中任选两条2分 ()在tH中,CHE9,HPQ=EF=BE=4-x5分()当x时,有最大值此时E、F、P分别为ABC三边BC、AB、AC的中点,且点C、 点Q重合平行四边形EFPQ是菱形过点作D于D,DH当E与四条边交点的总个数是个时,r;当E与四条边交点的总个数是个时,r; 当E与四条边交点的总个数是个时,r;当E与四条边交点的总个数是个时,r时;当E与四条边交点的总个数是个时,r时12分5(09福建福州)图1022(满分14分)已知直线l:y=x+m(m0)交x轴、y轴于A、B两点,点C、M分别在线段OA、AB上,且OC=2CA,AM=2MB,连接MC,将ACM绕点M旋转180,得到FEM,则点E在y轴上, 点F在直线l上;取线段EO中点N,将ACM沿MN所在直线翻折,得到PMG,其中P与A为对称点.记:过点F的双曲线为,过点M且以B为顶点的抛物线为,过点P且以M为顶点的抛物线为.(1) 如图10,当m=6时,直接写出点M、F的坐标,求、的函数解析式;(2)当m发生变化时, 在的每一支上,y随x的增大如何变化?请说明理由。 若、中的y都随着x的增大而减小,写出x的取值范围。解:()点的坐标为(,),点的坐标为(,)2分 设的函数解析式为(过点(,)的函数解析式为的顶点的坐标是(,)设的函数解析式为过点M(2,4)的函数解析式为6分(2)依题意得,A(m,),B(,m),点坐标为(),点坐标为(,)设的函数解析式为(过点(,)在的每一支上,y随着x的增大而增大答:当时,满足题意的x的取值范围为 0x;当时,满足题意的x的取值范围为x14分6(09福建宁德)25(本题满分13分)如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG(1)连接GD,求证:ADGABE;(4分)(2)连接FC,观察并猜测FCN的度数,并说明理由;(4分)(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上判断当点E由B向C运动时,FCN的大小是否总保持不变,若FCN的大小不变,请用含a、b的代数式表示tanFCN的值;若FCN的大小发生改变,请举例说明(5分)图(2)MBEACDFGNNMBECDFG图(1)MBEACNDFG图(1)H25(本题满分13分)解:(1)四边形ABCD和四边形AEFG是正方形 AB=AD,AE=AG,BADEAG90BAEEADDAGEADBAEDAG BAEDAG 4分(2)FCN45 5分理由是:作FHMN于H AEFABE90 BAE +AEB90,FEH+AEB90 FEHBAE 又AE=EF,EHFEBA90EFHABE 7分FHBE,EHABBC,CHBEFHFHC90,FCH45 8分MBEACNDFG图(2)H(3)当点E由B向C运动时,FCN的大小总保持不变,9分理由是:作FHMN于H 由已知可得EAGBADAEF90结合(1)(2)得FEHBAEDAG又G在射线CD上GDAEHFEBA90 EFHGAD,EFHABE 11分 EHADBCb,CHBE,在RtFEH中,tanFCN 13分当点E由B向C运动时,FCN的大小总保持不变,tanFCN7(09福建宁德)26(本题满分13分)如图,已知抛物线C1:的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1(1)求P点坐标及a的值;(4分)(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;(4分)(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180后得到抛物线C4抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标(5分)yxAOBPN图2C1C4QEF图(2)yxAOBPM图1C1C2C3图(1)yxAOBPM图(1)C1C2C3HG26(本题满分13分)解:(1)由抛物线C1:得顶点P的为(-2,-5) 2分点B(1,0)在抛物线C1上 解得,a 4分(2)连接PM,作PHx轴于H,作MGx轴于G点P、M关于点B成中心对称PM过点B,且PBMBPBHMBGMGPH5,BGBH3顶点M的坐标为(4,5) 6分 抛物线C2由C1关于x轴对称得到,抛物线C3由C2平移得到抛物线C3的表达式为 8分(3)抛物线C4由C1绕点x轴上的点Q旋转180得到顶点N、P关于点Q成中心对称 由(2)得点N的纵坐标为5yxAOBPN图(2)C1C4QEFHGK设点N坐标为(m,5) 9分 作PHx轴于H,作NGx轴于G 作PKNG于K 旋转中心Q在x轴上EFAB2BH6 FG3,点F坐标为(m+3,0) H坐标为(2,0),K坐标为(m,-5),根据勾股定理得 PN2NK2+PK2m2+4m+104 PF2PH2+HF2m2+10m+50 NF252+3234 10分 当PNF90时,PN2+ NF2PF2,解得m,Q点坐标为(,0) 当PFN90时,PF2+ NF2PN2,解得m,Q点坐标为(,0)PNNK10NF,NPF90综上所得,当Q点坐标为(,0)或(,0)时,以点P、N、F为顶点的三角形是直角三角形 13分8(09福建漳州)25(满分13分)几何模型:条件:如下左图,、是直线同旁的两个定点问题:在直线上确定一点,使的值最小方法:作点关于直线的对称点,连结交于点,则的值最小(不必证明)模型应用:(1)如图1,正方形的边长为2,为的中点,是上一动点连结,由正方形对称性可知,与关于直线对称连结交于,则的最小值是_;(2)如图2,的半径为2,点在上,是上一动点,求的最小值;(3)如图3,是内一点,分别是上的动点,求周长的最小值ABPlOABPRQ图3OABC图2ABECPD图1(第25题)P9(09福建漳州)26(满分14分)如图1,已知:抛物线与轴交于两点,与轴交于点,经过两点的直线是,连结(1)两点坐标分别为(_,_)、(_,_),抛物线的函数关系式为_;(2)判断的形状,并说明理由;(3)若内部能否截出面积最大的矩形(顶点在各边上)?若能,求出在边上的矩形顶点的坐标;若不能,请说明理由CAOBxyCAOBxy图1图2(备用)(第26题)抛物线的顶点坐标是26(1)(4,0),2分4分(2)是直角三角形5分证明:令,则6分解法一:7分是直角三角形8分解法二:,7分,即是直角三角形8分(3)能当矩形两个顶点在上时,如图1,交于,GAOBxy图1DEFHC9分解法一:设,则,=10分当时,最大,11分解法二:设,则10分当时,最大,CAOBxy图2DGG,11分当矩形一个顶点在上时,与重合,如图2,解法一:设,=12分当时,最大,13分解法二:设,=12分当时,最大,13分综上所述:当矩形两个顶点在上时,坐标分别为,(2,0);当矩形一个顶点在上时,坐标为14分10(09甘肃省)29.(本题满分9分)如图,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4), 点C在第一象限动点P在正方形 ABCD的边上,从点A出发沿ABCD匀速运动, 同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动, 设运动的时间为t秒(1)当P点在边AB上运动时,点Q的横坐标(长度单位)关于运动时间t(秒)的函数图象如图所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿ABCD匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论