



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
解剖高考对导数的考查要求高考对导数的考查要求是:了解导数的实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导数的概念;熟记导数的基本公式,掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数;理解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值时的必要条件和充分条件(导数在极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值考点1 考查导函数与原函数图象间关系例1.已知函数的图象如右图所示(其中是函数的导函数),下面四个图象中的图象大致是( )o-221-1-212o-2-221-112o-241-1-212o-22-124abcd( )( )( )( ) 解析:由图象可知:在上小于等于零,故原函数在上为减函数,故选c评注:函数图象提供了很多信息,但要抓住关键特点,如导数为零的点、导数为正值或负值的区间等考点2 考查导数的几何意义例2.曲线在点处的切线方程是 解析:设切线的斜率为,因为,故所以所求的切线的点斜式方程为:,化简得: 评注:导数的几何意义是曲线数在某点处切线的斜率所以求切线的方程可通过求导数先得到斜率,再由切点利用点斜式方程得到考点3 考查导数的定义的应用例3.已知,为正整数,设,证明证明:因为:,所以评注:此题考查导数概念性质的直接应用导数的定义为:设函数在点处及其附近有定义,并且在该点函数增量与自变量增量的比值,当的极限存在,则称此极限为函数在点处的导数,即考点4 考查利用导数判断函数的单调性例4.已知向量,若函数在区间上是增函数,求t的取值范围解析:依向量数量积的定义:故:,若在上是增函数,则在上可设的图象是开口向下的抛物线,由根的分布原理可知:当且仅当,且,上满足,即在上是增函数综上所述的取值范围是 评注:此题考查的是可导函数的单调性与其导数的关系和数形结合思想的应用判断的法则是:设在某个区间内可导,若,则为增函数;若,则为减函数,反之亦然考点5 考查导数在函数极点处的性质 例5.已知,讨论函数的极值点的个数解析:令=0得(1)当即4时有两个不同的实根,,不妨设0,因此无极值(3)当0即04时无实数根,即,故为增函数,此时无极值综上所述:当无极值点 评注:此题考查的是可导函数在某点取得极值的充要条件,即设在某个区间内可导,函数在某点取得极值的充要条件是该点的导数为零且在该点两侧的导数值异号.考点6 考查导数的实际应用例6.用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少? 解析:设容器的高为,容器的体积为,则,化简得:, ,令可得:,(舍)当时, 时,所以当时,有极大值.又,所以当时,v有最大值 评注:在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建设银行2025黔南布依族苗族自治州秋招群面案例总结模板
- 工商银行2025双鸭山市秋招英文面试题库及高分回答
- 2025年3D打印技术的产业革命
- 2025年3D打印的快速原型制作技术
- 工商银行2025泉州市秋招笔试EPI能力测试题专练及答案
- 交通银行2025衡水市结构化面试15问及话术
- 邮储银行2025玉林市半结构化面试15问及话术
- 建设银行2025临汾市秋招笔试创新题型专练及答案
- 农业银行2025信阳市金融科技岗笔试题及答案
- 文化创意设计产业园入园合同5篇
- 湘教版高中音乐(鉴赏)《黄河大合唱》课件
- CNAS体系基础知识培训课件
- 体育心理学(第三版)课件第三章运动兴趣和动机
- 监控中心值班人员绩效考核月度考核表
- Unit1Developingideaslittlewhitelies课件-高中英语外研版必修第三册
- 培训反馈意见表
- 商业银行资产管理与负债管理
- 电力系统分析孙淑琴案例吉玲power程序实验指导书
- 高标准农田建设项目施工组织设计 (5)
- 轻型动力触探试验记录表
- 桌牌桌签模板正反桌牌会议室三字两字桌牌word版
评论
0/150
提交评论