




免费预览已结束,剩余2页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
抛物线的简单性质教学目的:1掌握抛物线的范围、对称性、顶点、离心率等几何性质;2掌握焦半径公式、直线与抛物线位置关系等相关概念及公式;3在对抛物线几何性质的讨论中,注意数与形的结合与转化 教学重点:抛物线的几何性质及其运用教学难点:抛物线几何性质的运用 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程:一、复习引入: 抛物线的几何性质:标准方程图形顶点对称轴焦点准线离心率轴轴轴轴注意强调的几何意义:是焦点到准线的距离 抛物线不是双曲线的一支,抛物线不存在渐近线二、讲解新课:1.抛物线的焦半径及其应用:定义:抛物线上任意一点m与抛物线焦点的连线段,叫做抛物线的焦半径焦半径公式:抛物线,抛物线, 抛物线, 抛物线,2直线与抛物线:(1)位置关系:相交(两个公共点或一个公共点);相离(无公共点);相切(一个公共点)下面分别就公共点的个数进行讨论:对于当直线为,即,直线平行于对称轴时,与抛物线只有唯一的交点当,设将代入,消去y,得到关于x的二次方程 (*)若,相交;,相切;,相离综上,得:联立,得关于x的方程当(二次项系数为零),唯一一个公共点(交点)当,则若,两个公共点(交点),一个公共点(切点),无公共点 (相离)(2)相交弦长:弦长公式:,其中a和分别是(*)中二次项系数和判别式,k为直线的斜率当代入消元消掉的是y时,得到,此时弦长公式相应的变为:(3)焦点弦:定义:过焦点的直线割抛物线所成的相交弦。焦点弦公式:设两交点,可以通过两次焦半径公式得到:当抛物线焦点在x轴上时,焦点弦只和两焦点的横坐标有关:抛物线, 抛物线, 当抛物线焦点在y轴上时,焦点弦只和两焦点的纵坐标有关:抛物线, 抛物线,(4)通径:定义:过焦点且垂直于对称轴的相交弦直接应用抛物线定义,得到通径:(5)若已知过焦点的直线倾斜角则(6)常用结论:和和3抛物线的法线:过抛物线上一点可以作一条切线,过切点所作垂直于切线的直线叫做抛物线在这点的法线,抛物线的法线有一条重要性质:经过抛物线上一点作一直线平行于抛物线的轴,那么经过这一点的法线平分这条直线和这点与焦点连线的夹角如图抛物线的这一性质在技术上有着广泛的应用例如,在光学上,如果把光源放在抛物镜的焦点f处,射出的光线经过抛物镜的反射,变成了平行光线,汽车前灯、探照灯、手电筒就是利用这个光学性质设计的反过来,也可以把射来的平行光线集中于焦点处,太阳灶就是利用这个原理设计的 4抛物线的参数方程:(t为参数)三、讲解范例:例 正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线上,求这个正三角形的边长分析:观察图,正三角形及抛物线都是轴对称图形,如果能证明x轴是它们公共的对称轴,则容易求出三角形边长解:如图,设正三角形oab的顶点a、b在抛物线上,且坐标分别为、,则 ,又|oa|ob|,所以 即 ,由此可得,即线段ab关于x轴对称因为x轴垂直于ab,且aox30,所以 所以, 四、课堂练习:1正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线上,求这个正三角形的边长(答案:边长为)2正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线上,求正三角形外接圆的方程分析:依题意可知圆心在轴上,且过原点,故可设圆的方程为:,又 圆过点, 所求圆的方程为3已知的三个顶点是圆与抛物线的交点,且的垂心恰好是抛物线的焦点,求抛物线的方程(答案:)4已知直角的直角顶点为原点,、在抛物线上,(1)分别求、两点的横坐标之积,纵坐标之积;(2)直线是否经过一个定点,若经过,求出该定点坐标,若不经过,说明理由;(3)求点在线段上的射影的轨迹方程 答案:(1); ;(2)直线过定点(3)点的轨迹方程为 5已知直角的直角顶点为原点,、在抛物线上,原点在直线上的射影为,求抛物线的方程(答案:)6已知抛物线与直线相交于、两点,以弦长为直径的圆恰好过原点,求此抛物线的方程(答案:)7已知直线与抛物线相交于、两点,若,(为坐标原点)且,求抛物线的方程(答案:)8顶点在坐标原点,焦点在轴上的抛物线被直线截得的弦长为,求抛物线的方程(答案:或)五、小结 :焦半径公式、直线与抛物线位置关系等相关概念及公式 六、课后作业:七、板书设计(略)八、测 试 题:1顶点在原点,焦点在y轴上,且过点p(4,2)的抛物线方程是()(a) x28y (b) x24y (c) x22y (d) 2抛物线y28x上一点p到顶点的距离等于它们到准线的距离,这点坐标是(a) (2,4) (b) (2,4) (c) (1,) (d) (1,)3抛物线顶点在原点,以坐标轴为对称轴,过焦点且与y轴垂直的弦长等于8,则抛物线方程为4抛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- JJF(石化)076-2023抗乳化性能测定仪校准规范
- 重庆智能安防小知识培训课件
- 儿童过敏性紫癜全面护理与家庭支持指南
- 新解读《GB-T 10499-2014糖料甘蔗试验方法》
- 书面表达之观点看法类-2023年中考英语一轮复习(原卷版)
- 老年人讲经络课件
- 重卡动力电池知识培训课件
- 天宫一号招商方案
- 统编版八年级上册期中检测历史试卷(含答案)
- 第二节 两条直线的位置关系2026年高三数学第一轮总复习
- 2025年高中数学湘教版选择性必修第一册详解答案
- 1.2 我们都是社会的一员 课件 内嵌视频 统编版八年级道德与法治上册
- 2024-2025学年云南省人教版七年级英语下学期期末测试卷一
- 互文性与叙事策略-洞察及研究
- 小区物业监控管理制度
- 中医砭石疗法课件
- T/CECS 10128-2021不锈钢二次供水水箱
- 区县应急广播管理制度
- 心肺复苏应急试题及答案
- 露营股份合作协议书
- 订购白酒居间合同协议
评论
0/150
提交评论