


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学 用二分法求方程的近似解精品教案集 新人教a版教学目的:(1)通过用”二分法”求方程的近似解,使学生体会函数的零点与方程根之间的联系,初步形成函数观点处理问题的意识;(2)通过”二分法”的学习使学生初步接触算法的思想;教学重点:用”二分法”求方程的近似解教学难点:”二分法”求方程的近似解的思想和步骤 教学过程:一、 复习引入 零点的概念:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点 连续函数在某个区间上存在零点的判别方法:如果函数y=f(x)在区间a,b上的图象是连续不断一条曲线,并且有f(a)f(b)0,那么,函数y=f(x)在区间(a,b)内有零点.即存在c(a,b),使得f(c )=0,这个c也就是方程f(x)=0的根. 一元二次方程可以用公式求根,但没有公式来求inx+2x-6=0的根.联系函数的零点与相应方程根的关系,能否利用函数的有关知识来求它的根呢?二、 新课教学(一)用二分法求方程的近似解1用二分法求方程inx+2x-6=0的近似解想法:如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,我们可以得到零点的近似值.一般地,我们把 称为区间(a,b)的中点. 2二分法概念对于在区间a,b上连续不断、且f(a)*f(b)0的函数y=f(x),通过不断把函数f(x)的零点所在区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法思考: 为什么由|a-b| ,便可判断零点的的似值为a(或b)?区间中点的值中点函数近似值(2,3)2.5-0.084(2.5,3)2.750.512(2.5,2.75)2.6250.215(2.5,2.625)2.56250.066(2.5,2.5625)2.53125-0.009(2.53125,2.2625)2.5468750.029(2.53125,2.546875)2.53906250.010(2.53125,2.5390625)2.535156250.0013、用二分法求方程的近似解的步骤、确定区间a,b,验证f(a)*f(b)0,给定精确度、求区间(a,b)的中点x1、计算f(x1);(1) 若f(x1)=0,则x1就是函数的零点(2) 若f(x1)0,则令a= x1(此时零点x0(x1,b)、判断是否达到精确度,即若|a-b| ,则得到零点的近似值a(或b);否则得复24(二)典型例题例2、借助电子计算器或计算机用二分法求方程2x+3x=7的近似解(精确到0.1)解:原方程即2x+3x=7,令 f(x)=2x+3x-7 ,用计算器或计算机作出函数f(x)=2x+3x-7 对应值表与图象(如下):x01234567f(x)=2x+3x-7-6-2310214075142区间中点的值中点函数近似值(1,2)1.50.33(1,1.5)1.25-0.87(1.25,1.5)1.375-0.28(1.375,1.5)1.43750.02(1.375,1.4375)由于 |1.375-1.4375|=0.06250.1 此时区间(1.375,1.4375)的两个端点精确到0.1的近似值都是1.4,所以原方程精确到0.1的近似解为1.4。巩固练习:(教材p106练习1)三、 归纳小结,强化思想二分法是求方程近似解的一种常用方法,它是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 炎症性肠炎的护理常规
- 财务管理核心流程优化与控制
- 单词挑战赛课件
- 医药收货验收工作总结
- 未来教育发展蓝图
- 征信合规与信息安全培训
- 外科护理学第20章脓胸
- 住院患者低血糖的表现及护理
- 2025年商业写字楼智能化初步设计评估与智能化改造案例研究报告
- 基于流体动力学的储能电池热管理系统研究报告
- 借款合同模版
- 义务教育英语课程标准(2022年版)
- 荆州中学2024-2025高二学年下学期6月月考 英语答案
- 2018-2022北京高中合格考生物汇编:基因的表达
- 2025至2030中国IT运维管理行业发展趋势分析与未来投资战略咨询研究报告
- 新生儿病区专科理论考试题库
- 健康评估咳嗽咳痰课件
- 白酒酒店合作合同协议书
- 中国融通农业发展有限集团有限公司招聘笔试题库2025
- 实验室通风系统工程施工方案
- 2024淮安市专业技术人员继续教育试题参考答案
评论
0/150
提交评论