


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
281 锐角三角函数(2)第二课时教学目标:知识与技能:1、了解锐角三角函数的概念,能够正确应用sinA、cosA、tanA表示直角三角形中两边的比2、逐步培养学生观察、比较、分析、概括的思维能力过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯 重难点:1理解余弦、正切的概念2难点:熟练运用锐角三角函数的概念进行有关计算学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号 sinA 、 cosA 、 tanA 表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。教学过程:一、复习旧知、引入新课【复习】1、口述正弦的定义2、(1)如图,已知AB是O的直径,点C、D在O上,且AB5,BC3则sinBAC= ;sinADC= (2)2006成都如图,在RtABC中,ACB90,CDAB于点D。已知,BC=2,那么sinACD( )A: B: C:3 D:52AC二、探索新知、分类应用【活动一】余弦、正切的定义一般地,当A取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值? 如图:RtABC与RtABC,C=C =90o,B=B=, DB那么与有什么关系?分析:由于C=C =90o,B=B=,所以RtABCRtABC,即结论:在直角三角形中,当锐角B的度数一定时,不管三角形的大小如何,B的邻边与斜边的比也是一个固定值。如图,在RtABC中,C=90o,把锐角B的邻边与斜边的比叫做B的余弦,记作cosB即把A的对边与邻边的比叫做A的正切.记作tanA,即4锐角A的正弦,余弦,正切都叫做A的锐角三角函数.【活动二】余弦、正切简单应用教师解释课本第78页例2题意:如课本图281-7,在RtABC中,C=90,BC=6,sinA=35,求cosA、tanB的值教师对解题方法进行分析:我们已经知道了直角三角形中一条边的值,要求余弦,正切值,就要求斜边与另一个直角边的值我们可以通过已知角的正弦值与对边值及勾股定理来求教师分析完后要求学生自己解题学生解后教师总结并板书三、总结消化、整理笔记在直角三角形中,当锐角A的大小确定时,A的邻边与斜边的比叫做A的余弦,记作cosA,把A的对边与斜边的比叫做A的正切,记作tanA【活动二】题型分析(1)判断题:i 对于任意锐角,都有0sin1和0cos1 ( ) ii 对于任意锐角1,2,如果12,那么cos1cos2 ( ) iii 如果sin1sin2,那么锐角1锐角2I ( ) iv 如果cos1cos2,那么锐角1锐角2 ( )(2)在RtABC中,下列式子中不一定成立的是_AsinAsinB BcosAsinB CsinAcosB Dsin(A+B)sinC35( (3)VABC中,C=90,sinA=o.求cosA,sinB和tanA的值(4)sin272+sin218的值是( )A:1 B:0 C:1 D:2三、总结消化、整理笔记1、一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系:sinA=cosB或sinB=cosA2、使学生了解同一个锐角正弦与余弦之间的关系:sinA+cosA=1 223、使学生了解正切与正弦、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绿色低碳数字化新型园区污水处理厂项目可行性研究报告模板立项申批备案
- 2025合作协议样本
- 2025年春季部编版初中数学教学设计八年级下册第1课时 平行四边形的判定 1
- 摄像课基础知识培训课件
- 2025年版动产与不动产抵押合同模板
- 公司股权税务知识培训总结
- 公司组织安全知识培训课件
- 插花入门基础知识培训课件
- 制造业岗位面试题及答案
- 2025济南市房屋租赁合同中介版
- 酒店客房样板间装修验收记录表
- 2024年高级统计实务考试真题及答案解析
- 铁总物资〔2015〕250号:中国铁路总公司物资采购异议处理办法
- GB/Z 42625-2023真空技术真空计用于分压力测量的四极质谱仪特性
- 人民医院心血管外科临床技术操作规范2023版
- 助理工程师考试试题以及答案
- 送东阳马生序
- 2017年全国大学生数学建模A题
- 2023年专升本计算机题库含答案专升本计算机真题
- GB/T 16674.1-2016六角法兰面螺栓小系列
- 住宅项目景观工程施工策划(图文并茂)
评论
0/150
提交评论