一次函数教学设计 刘香字.docx_第1页
一次函数教学设计 刘香字.docx_第2页
一次函数教学设计 刘香字.docx_第3页
一次函数教学设计 刘香字.docx_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新人教版一次函数(第一课时)教案及反思教材分析 :本节内容是这个单元的基础,是一次函数基本概念,学生的基础差所以要复习相关内容,边讲边练,加强对概念的掌握和理解 教学目标:1、让学生经历对具体情景的探究过程,通过举出生活实例观察、比较、探索、归纳得出一次函数的概念。 2、理解一次函数和正比例函数的联系和区别。能在探索一次函数活动中提出数学问题,初步体会在解决问题的过程中与他人合作、探究的方法。 3、培养学生独立思考与合作的能力。初步发展他们抽象思维能能力,体验函数与人类生活的密切联系,增强对函数兴趣。体验数学充满着探索和创造性,从而培养学生学习数学的乐趣。重点:掌握一次函数的概念。根据实际条件,分清两个变量的关系,列出一次函数的解析式。难点:培养学生的抽象思维能力。培养独立思考、探究、合作、交流、应用的能力。教学过程:课前准备学生编生活中的函数。 (一)、创设问题的情境,导入新课。 课前要求同学们编题,老师有一个函数问题请同学们解答。问题1:小李同学第一次去新乡,汽车驶上了高速路后,小李同学观察里程碑,发现汽车的平均速度是70千米/时,已知去新乡的高速公路全程为140千米,小李同学想知道汽车从滑县驶出后,距新乡的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和新乡的距离。你能帮助他吗?学生观看表演、独立思考、尝试解答下列问题,然后和同桌交流。题中常量是什么?变量有几个?分别是什么?变量与常量间有什么等量关系。 140千米用字母表示变量,列出函数关系式。教师引导点播画出示意图,全班交流讨论。达成共识:汽车距新乡的路程随行驶的时间的变化而变化,因此这里涉及两个变量:汽车距新乡的路程和汽车行驶的时间,为此可设汽车距新乡的路程为(S千米),汽车行驶的时间为t (小时),通过观察三名同学表演及所画的示意图可知:S =140- 70 t(0t2) (二)、合作探究新课 1、一次函数定义探究。问题2 Q =400 - 33 t y = 30 - 2x S =140-70t这三个函数有什么共同特征呢?你能用一个表达式表示这个共同特征吗?(投影展示)学生思考、讨论、解答、交流。教师在学生思考、讨论、回答基础上,评价并引导、点播、探究规律。概括:像这样,这三个函数解析式都是用自变量的一次整式表示的,我们称它们为一次函数。同学们说出的“y=kx+b”是这几个式子的共同持征,我们把它叫做一次函数的一般式。问题3 对于一次函数的一般式y=kx+b中的k可以等于0吗?为什么? b可以等于0吗?若b=0函数式子是什么?同桌交流讨论,在此基础上全班交流。教师引导、启发学生理解。师生共同归纳得出:k0,因为若k=0,则y=kx+b变为y=b,此时没有一次项,就不在是一次函数了。b可以等于0,若b=0函数式子变为y=kx(k0 ,k为常数),此时的函数叫做正比例函数,它是一次函数的特殊情况。互动2 判断正误。(投影展示)(1)一次函数是正比例函数;(2)正比例函数是一次函数;(3)x+3y = 2是一次函数; (4)2y-x = 0是正比例函数。例题:小琳同学准备将平时的零用钱节约一些储存起来,捐给希望工程,她已存有50元,从现在起每个月节存12元。试写出小琳同学存款与从现在开始的月份数之间的函数关系式。算一算2个月后的存款为多少元?。若她想存款达到110元时,就捐给希望工程,那么需存款几个月呢?(投影展示) (三)、达标反馈。 1、函数: y=-2x+1 ; x+y=0 ; xy=2; y= +1; y=x2+3; y = - 0.6x中,属于一次函数的有;属于正比例函数的有(填写序号)2、当m = 0 时, n 1 时,函数y =(n-1)xm+1+3 是一次函数。3、写出一个满足条件:当自变量取2时,对应的函数值为 -3的一次函数的解析式(只写一个) y = - x -1 。4、设圆的面积为S,半径为R,那么下列说法正确的是( C )A、 S是R的一次函数 B、S是R的正比例函数C、 S是R2的正比例函数 D、以上说法都不正确。5某种运动鞋的单价是108元/双,当购买x双时,花费为y元,则y是x的正比例函数,又是一次函数. (四)、总结评价。 (1)内容总结:一次函数、正比例函数的意义和表达式。(2)方法归纳:在具体问题中,如果涉及两个变量且只包含一个等量关系时,常用两个字母表示这两个变量,通过建立函数模型来解决问题。识别一个函数是否为一次函数(或正比例函数)的关键是理解它们的意义,能将式子转化为其一般表达形式。 (五)、延伸拓展及反思。 1、链接生活某公司到果园基地购买优质水果,慰问医务工作者,果园基地对购买量在3000kg以上(含3000kg)的有两种销售方案,甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从某地到公司的运费为5000元。分别写出该公司两种购买方案的付款y(元)购买的水果量x (kg)之间的函数关系式,并写出自变量的取值范围。解:y甲 = 9 x(x3000),y乙= 8 x +5000 (x3000)教学自我反思:通过教学活动,充分体现了学生自主、合作、探究的学习方式。重视学生的数学学习过程和他们的个性体验,充分让学生体会数学源于生活中的实际问题,又应用于生活。突出人人学有价值的数学的思想。帮助学生在学习过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得数学活动的经验。给学生充分思考的空间和时间。让学生自已互相学习,形成互动的局面。互相评价、互相尊重和互相信任。在一种和谐、热烈讨论的气氛中进步成长,从而激发学生的学习兴趣。但在如何把握好时间,使教学紧凑一些,增大教学容量,教学灵活选用各个教学环节还不够。 2谈谈您在实施新课程中函数教学时是怎样与信息技术相结合的现代信息技术的发展,为数学教学的发展创造了广阔的空间,促进了数学教学的发展,让单调、枯燥的数学知识变得有声有色,特别是函数这部分知识,涉及到数形结合,函数图象的动态变化,信息技术更显示出它的优越性。函数的引入课,为了让学生体会两个变量之间的关系,需要大量引入实际例子,特别是图象的展示,这是黑板与粉笔达不到的效果和信息量。所以我采用多媒体课件,效果很好。在讲一次函数的应用时,我采用了多媒体课件,因为涉及到的题目内容比较长,而且需要数形结合,利用课件把题目和图形准确、清晰的展示在学生面前,老师再逐一进行讲解。在讲解函数的基础知识时,我不采用课件,总感觉上课不得劲,学生的基础知识的训练不牢固,但是,涉及到图象运动的习题,比如:k值的不同,所反映反比例函数图象的不同

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论