




已阅读5页,还剩78页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.1 几个基本概念和金属的特征一. 金属材料金属材料是指金属元素与金属元素,或金属元素与少量非金属元素所构成的,具有一般金属特性的材料,统称为金属材料。金属材料按其所含元素数目的不同,可分为纯金属(由一个元素构成)和合金(由两个或两个以上元素构成)。合金按其所含元素数目的不同,又可分为二元合金、三元合金和多元合金。大家知道物质按其形态不同,可分为固体、液体和气体。而固体又可分晶体和非晶体。二. 晶体组成固态物质的最基本的质点(如原子、分子或离子)在三维空间中,作有规则的周期性重复排列,即以长程有序方式排列。这样的物质称为晶体。如:金属,天然金刚石,结晶盐,水晶,冰等三. 非晶体:组成固态物质的最基本的质点,在三维空间中无规则堆砌。这样的物质称为非晶体。如:玻璃,松香等。晶体通常又可分为金属晶体和非金属晶体,纯金属及合金都属于金属晶体,其原子间主要以金属键结合,而非金属晶体主要以离子键和共价键结合。如:食盐NaCl(离子键),金刚石(共价键)都是非金属晶体。四. 金属键金属键是金属原子之间的结合键,它是大量金属原子结合成固体时,彼此失去最外层子电子(过渡族元素也失去少数次外层电子),成为正离子,而失去的外层电子穿梭于正离子之间,成为公有化的自由电子云或电子气,而金属正离子与自由电子云之间的强烈静电吸引力(库仓引力),这种结合方式称为金属键,见P2页图1-1。五. 金属特征金属材料主要以金属键方式结合,从而使金属材料具有以下特征:1. 良好的导电、导热性:自由电子定向运动(在电场作用下)导电、(在热场作用下)导热。2. 正的电阻温度系数:即随温度升高,电阻增大,因为金属正离子随温度的升高,振幅增大,阻碍自由电子的定向运动,从而使电阻升高。3. 不透明,有光泽: 自由电子容易吸收可见光,使金属不透明。自由电子吸收可见光后由低能轨道跳到高能轨道,当其从高能轨道跳回低能轨道时,将吸收的可见光能量辐射出来,产生金属光泽。4. 具有延展性:金属键没有方向性和饱和性,所以当金属的两部分发生相对位移时,其结合键不会被破坏,从而具有延展性。1.2 晶体结构不管是金属晶体还是非金属晶体,其晶体结构如何,与组成晶体的物质质点(可以是原子、分子或离子,也可以是原子群,分子群或离子群的中心)的具体排列方式和规律有关。科技工作者一般是用晶体结构模型进行描述。一. 晶体结构模型按晶体结构模型提出的先后,可将晶体结构模型分为球体模型、晶格模型和晶胞模型。1. 晶体的球体模型就是把组成晶体的物质质点,看作为静止的刚性小球,他们在三维空间周期性规则堆垛而成,见P3页图1.3(a)。该模型虽然很直观,立体感强,但不利于观察晶体内部质点的排列方式。针对这一缺陷科技工作者进一步提出了晶体的晶格模型。2. 晶体的晶格模型1) 空间点阵将组成晶体的物质质点,进一步抽象为几何点,这些几何点在三维空间周期性、规则地排列成的阵列,称为空间点阵或布喇菲点阵;而这些几何点称为阵点或结点。2)晶体的晶格模型用假想的平行直线将阵点联结起来,就构成了晶体的晶格模型,也称空间格子,简称晶格。见P3页图1.3(b)。显然用抽象了的晶格模型来研究晶体结构就方便多了。3) 晶体的晶胞模型简称为晶胞。由于晶体的特点是,原子在三维空间有规则的周期性重复排列。因此,可以从晶格模型中取出一个具有代表性的最基本的结构单元,来研究晶体结构的特征。这个能够反映晶格结构的最基本的结构单元就称为晶胞。见P3页图1.3(c)。由于晶胞中原子的排列规律,能够完全代表晶格中原子的排列规律,所以晶胞在三维空间的重复堆砌便构成了晶格。因此可以说,晶胞就是构成晶格的细胞。利用晶胞来反映晶体中原子的排列方式和特征,将更为方便。所以在研究晶体结构时,都是取它的晶胞进行研究。 反映晶胞的参数:由于不同的晶体其晶格结构不同,故取出的晶胞也不相同。为了反映各晶胞的特征,通常以晶胞的某一顶角为坐标原点,以x、y、z为晶轴,见图1.3 (c).用晶格常数(点阵常数)和晶轴夹角来反映晶胞的特征。a. 晶格常数:为晶胞各棱边长度,用a、b、c表示,称为点阵常数,单位用nm或埃1=10 8cm (1nm=10-9m)b.晶轴夹角:为晶胞各棱边间夹角,用、表示。当某一晶胞的晶格常数a=b=c,=900时,该晶胞称为立方晶胞。4)晶系与空间点阵a. 晶系:是晶体分类的一种方式,具有相同晶胞特征参数的晶体属于同一晶系。根据晶胞特征参数的不同,晶体可分为七大晶系: 见P4页表1.1,即三斜、单斜、正交、正方、六方、菱方、立方晶系。b. 晶系与空间点阵:根据每个阵点具有相同的周围环境(距离、位向),法国晶体学家布喇菲用数学方法首先证明,空间点阵只能有14种,它分属上述七个晶系,见P4页图1.4或表1.1。其中有7种为简单晶胞,7种为复杂晶胞或复合晶胞。简单晶胞只在其平行六面体的八个顶角上有阵点,属于该晶胞的阵点数为1。因为晶胞顶角上的每一个阵点属于八个相邻晶胞所共有(即8x1/8=1)。而复合晶胞除在八个顶角上有阵点外,还在其体心、面心(每个面的中心),或底心(上下底面的中心)有阵点,所以这种晶胞的阵点数2。由于空间点阵上的阵点,可以代表各种不同物质的原子、分子或离子,以及原子群、分子群或离子群;所以同一种空间点阵,可以有无限种实际晶体结构。见P5页图1.5(a),(b),(c)三种不同的晶体结构都属于(d)这种空间点阵。因此可以说空间点阵是有限的(只能有14种),而晶体结构是无限的可以有很多种。二. 纯金属的三种典型晶体结构由元素周期表可知金属的种类很多,而且它们的晶体结构并不完全相同。工业上常用的金属绝大多数具有比较简单的晶体结构,其中最典型的为体心立方结构(bcc)、面心立方结构(fcc)和密排六方结构(hcp),见P5页图1.6。1. 三种典型晶体结构的形貌图1.6中(a)为体心立方结构,即在立方晶胞的八个顶角上各有一个原子,在体中心有一个原子,每个原子与空间点阵中的一个阵点相对应。属于这种晶体结构的纯金属有-Fe,Cr,Mo,W,V等。图1.6中(b)为面心立方结构,即在立方晶胞的八个顶角上各有一个原子,每个面的中心各有一个原子,属于这种晶体结构的纯金属有Al,Cu,Au,Ag,Ni,Pb,-Fe等。图1.6中(c)为密排六方结构,它是在六棱柱体晶胞的十二个顶角上各有一个原子,上下顶面中心各有一个原子,在六棱柱中三个相间的三棱柱中心各有一个原子,属于这种晶体结构的纯金属有Mg,Zn,Cd等。2. 描述金属晶体结构的一些重要参数由于在金属晶体中,一个原子与空间点阵中的一个阵点相对应,所以我们可以用刚性球体模型,计算出其晶体结构中的下列重要参数。1) 单位晶胞原子数:即一个晶胞所含的原子数目。2) 原子半径:是利用晶格常数,算出晶胞中两相切原子间距离的一半。3) 配位数:是晶体结构中任何一原子周围最近邻且等距离的原子数目,配位数越大,原子排列的越紧密。4) 致密度:是单位晶胞中原子所占体积与晶胞体积之比,其表达式为 K=nv/V;K致密度;n单位晶胞原子数,v每个原子的体积,V晶胞体积,致密度越大,原子排列越紧密。5) 间隙半径: 指晶格空隙中能容纳的最大球体半径。因为相同尺寸的原子,既使按最紧密方式排也会存在空隙。三种典型晶体结构的重要参数小结晶格类型 单位晶胞原子数 原子半径 配位数 致密度 间隙半径 体心立方 2 3/4a 8 0.68 0.29面心立方 4 2/4a 12 0.74 0.41密排六方 6 1/2a 12 0.74 0.41三. 金属晶体中晶面和晶向的表示晶面 是金属晶体中原子在任何方位所组成的平面。晶向 是金属晶体中原子在任何方向所组成的直线。晶面指数 表示晶面在晶体中方位的符号。晶向指数 表示晶向在晶体中方向的符号。1. 晶面指数的确定1) 立坐标,找出所求晶面的截距;(坐标原点不可设在所求晶面上)所求晶面与坐标轴平行时,截距为;2) 取晶面与三个坐标轴截距的倒数;3) 将所得倒数按比例化为最小整数,放入圆括号内,即得所求晶面的晶面指数,一般用(hkl)表示。以P7页图1.9和立方晶系为例,画图说明晶面指数的具体确定方法。对于立方晶系由于其对称性高,所以可将其原子排列情况相同,而空间位向不同的晶面归为同一个晶面族,用hkl表示。如(100),(010),(001)就属于100晶面族。而(110),(101),(011),(10),(01),(01)就属于110晶面族。(111),(11),(11),(11)就属于111晶面族。对于非立方晶系由于其对称性较差,所以其晶面指数数字相同,而排列次序不同的晶面不属于同一个晶面族。如在正交晶系中(100),(010),(001)晶面就不属于同一个晶面族100,因为其晶格常数abc。2. 晶向指数的确定1) 建立坐标,将所求晶向的一端放在坐标原点上(或从坐标原点引一条平行所求晶向的直线);2) 求出所求晶向上任意结点的三个坐标值;3) 将所得坐标值按比例化为最小整数,放入方括号内,即得所求晶向的晶向指数一般用uvw表示。以P7页图1.10为例,画图说明晶向指数的具体确定方法。对于立方晶系由于其对称性高,也可将其原子排列情况相同,而空间位向不同的晶向归为同一个晶向族,用表示,如晶向100,010,001属于晶向族。在立方晶系中,当晶面指数与晶向指数相同时,即h=u, k=v, l=w时(hkl)uvw,如(111)111。但在对称性较差的非立方晶系中,一般不存在这种关系。由晶面指数和晶向指数的介绍,可以发现不同的晶面和晶向上,原子排列的紧密程度不同。晶面上原子排列的紧密程度,可用晶面的原子密度(单位面积上的原子数)表示;晶向上原子排列的紧密程度,可用晶向的原子密度(单位长度上的原子数)表示。以体心立方和面心立方为例,画图说明晶面和晶向原子密度的具体计算方法。通过计算和比较可以发现,在晶体中原子最密排晶面之间的距离最大,原子最密排晶向之间的距离最大;这是晶体在外力作用时,总是沿着原子最密排晶面和原子最密排晶向,首先发生相对位移的主要原因之一。3. 六方晶系晶面和晶向指数的确定以上介绍的晶面和晶向指数的确定方法,是国际上通用的密勒指数法,它适用于各种晶系。但用它确定六方晶系的晶面和晶向指数时,从其各晶面指数和晶向指数中,却反映不出原子排列情况相同,而空间位向不同的各等同晶面和各等同晶向之间的关系。见P8页第56行。如果采用四个坐标轴,即a1,a2,a3,c就可较好地反映出各等同晶面和各等同晶向之间的关系。这样可用(hkil)表示晶面指数,用uvtw表示晶向指数。由于在二维平面最多只有两个独立的坐标,则a3=-(a1+a2),因此有i=-(h+k), t=-(u+v)。用四个坐标轴确定六方晶系的晶面指数的方法,与用三个坐标轴时相同,只需多确定出在a3轴上的截距。它也可以先用三个坐标确定,再根据i=-(h+k)的关系,加上第四个指数。而用四个坐标轴确定晶向指数时,必须从坐标原点出发,沿平行于四个坐标轴的方向依次移动,最后到达所求晶向上的某一结点。具体确定方法见P8页图1.12,应注意沿a3轴移动的距离,应等于沿a1,a2轴移动距离之和的负值,即满足t=-(u+v)。用三个坐标轴确定的晶向指数和用四个坐标轴确定的晶向指数,可根据P8页下的公式相互转换。用四个坐标轴确定出的六方晶系的晶面和晶向指数,就能较好地反映出各原子排列情况相同,而空间位向不同的各等同晶面和晶向之间的关系。见P8页第1011行和图1.11,图1.12。4. 金属晶体的各向异性1) 单晶体由一个晶核所长成的大晶体,它的原子排列方式和位向完全相同,这样的晶体称为单晶体。2) 各向异性是单晶体沿各不同晶面或晶向具有不同性能的现象。如体心立方结构-Fe单晶体的弹性模量E,在方向E =2.8105 MPa,而在方向E =1.32105 MPa,两者相差两倍多。而且发现单晶体的屈服强度、导磁性、导电性等性能,也存在着明显的各向异性。单晶体具有各向异性的主要原因是,其晶体中原子在三维空间是规则排列的,造成各晶面和各晶向上原子排列的紧密程度不同(即晶面的原子密度和晶向的原子密度不同),使各晶面之间以及各晶向之间的距离不同,因此各不同晶面、不同晶向之间的原子结合力不同,从而导致其具有各向异性。3) 多晶体由许多晶核长成的大晶体,因各晶核的原子排列方式相同,而位向不同,因此在各晶核长成的晶粒交界处存在着晶界,所以多晶体由许多晶粒组成,见图1.13。多晶体中各晶粒相当于一个小的单晶体,它具有各向异性。由于各晶粒位向不同,因此它们的各向异性相互抵消,表现为各向同性,多晶体的这种现象称为伪等向性(伪无向性)。非晶体由于原子排列无规则,所以沿各不同方向测得的性能相同,表现为各向同性。1.3 实际金属晶体中的晶体缺陷理想晶体理想晶体是指晶体中原子严格地成,完全规则和完整的排列,在每个晶格结点上都有原子排列而成的晶体。如理想晶胞在三维空间重复堆砌就构成理想的单晶体。实际晶体=多晶体+晶体缺陷实际使用的金属材料绝大多数都是多晶体,即由许多不同位向的晶粒和晶界组成。在金相显微镜下一般如下图,各小晶粒可以近似地看作是一个小的单晶体。但是实际金属材料的每个晶粒中,还存在着各种晶体缺陷。晶体缺陷晶体缺陷是晶体内部存在的一些原子排列不规则和不完整的微观区域,按其几何尺寸特征,可分为点缺陷、线缺陷和面缺陷三类。晶体缺陷在实际金属材料中所占的量很少(只占原子总数的千分之一),因此仍可把实际金属材料的结构看作是接近完整的。由于晶体缺陷在晶体中并不是静止不动的,它可以随外界条件的改变进行运动、增加、发生交互作用和消失,所以它对金属材料的性能、固态相变、扩散等过程,将产生重大影响。一. 点缺陷1. 点缺陷的概念 是晶体中在X,Y,Z三维方向上尺寸都很小的晶体缺陷。2. 点缺陷的类型 见P9页图1.14主要有四类,即空位;间隙原子(有同类和异类之分);置换原子(有大小之分);复合空位。3. 点缺陷的形成 可以是液态金属凝固时,少数原子发生偶然的错排而形成;也可以是晶体在高温或外力作用下形成。对于纯金属中只能形成空位、同类间隙原子和复合空位。而金属中含有少量杂质元素时,才可能形成异类间隙原子和置换原子;当有尺寸不同的两种杂质原子时,才可能形成大小不同的置换原子。一般认为组成晶体的原子在晶格结点上并不是静止不动的,而是以晶格结点为中心不停地作热振动,但受到周围原子的约束,它只能处在其平衡位置上(即晶格结点上)。但是晶体中每个原子的振动能量是不同的,并随时间和外界条件而改变(如温度升高,振幅增大),即存在着能量起伏。当某一原子某一瞬间具有足够大的能量时,它将摆脱周围原子的约束,跳离其原平衡位置(即振动中心),形成空结点即空位。如果它跳到晶格间隙处,则形成同类间隙原子。空位、间隙原子、置换原子的存在都破坏了原子排列的规律性。使晶格发生局部弹性变形,晶格的这种弹性变形称为晶格畸变,见图1.14。空位和小置换原子使其周围原子向该位置靠拢,产生负畸变;而间隙原子和大置换原子使周围原子被挤开,产生正畸变。二. 线缺陷1. 线缺陷的概念 是晶体中在一维方向上尺寸很大,而在另外二维方向上的尺寸很小的晶体缺陷,它的主要形式是位错。1) 位错的类型(1) 位错:是晶体中一列或若干列原子,发生某种有规律的错排现象。它的类型很多主要有刃型位错,螺型位错和混合型位错等。(2) 刃型位错:是在完整晶体中的某一个晶面上, 多出了半排原子面,这半排多出的原子面就象刀刃垂直切入完整晶体中一样,故称为刃型位错。见P10页图1.15。EFGH面为多余半原子面,EF线为位错线。通常用符号“”表示正刃型位错,既在晶体上半部有多余半原子面;而用符号“”表示负刃型位错,既在晶体的下半部有多余半原子面。由图可以看出,位错的存在使晶体中局部区域原子排列的规律性受到破坏,在ABCD晶面上位错线附近的原子受压应力,在ABCD晶面下方位错线附近的原子受拉应力。因此在位错线周围产生了严重的晶格畸变,这说明位错不是一个原子列,而是一个晶格畸变“管道”,通常以该管道的中心作为位错线。(3) 螺型位错:见P10页图1.16是在简单立方晶体的右端(左端也行)加切应力,使晶体沿ABCD晶面上下局部发生一个原子间距的相对位移,所产生的原子错排现象,由于该错排区成螺旋型管道状,见图1.16(b) 、(c)故称为螺型位错。不管是刃型位错还是螺型位错,从微观看都是一个晶格畸变的管道区,其管道的直径较小,只有几个原子间距,而长度较长有几百到上万个原子间距,故称为线缺陷,可用其中心线表示。见图1.17。因为在实际晶体中存在着大量的位错,一般以空间三维网状分布,(已用透射电子显微镜在铁中观察到),网络中的各线段可以是刃型,螺型或混合型位错。晶体中位错数目的多少一般用位错密度表示,= L/V,是单位晶体中所包含的位错线总长度,单位为cm /cm3 (1/cm2)。在退火态金属中 106-108cm-2 ,而经冷形变后到1011 1012 cm-2。因此晶体中的位错可以是在凝固过程中形成,也可以在塑性变形时形成。三. 面缺陷面缺陷的概念:是指晶体中在二维方向上尺寸很大,而在另一维方向上尺寸很小的晶体缺陷。面缺陷的类型:主要包括晶体的外表面、堆垛层错、晶界、亚晶界、孪晶界和相界面等。1. 晶界晶界是多晶体中晶粒与晶粒之间的交界面,由于各晶粒中原子排列方式相同(如都是体心立方),只是晶格位向不同,因此晶界实际上是不同位向晶粒之间的过渡层。该过渡层有一定的厚度,为了同时适应两侧不同位向晶粒的过渡,而使过渡层处的原子总是不能规则排列,产生晶格畸变,见P11页图1.18,所以它是晶体中的一种重要的面缺陷。根据晶体中各晶粒之间的位向差不同,又可将晶界分为大角度晶界(10)和小角度晶界(S固,两曲线交点的温度为金属的理论结晶温度即熔点。这时液、固两相的自由能相等,液、固两相处于动态平衡状态,两相可以长期共存。当T=Tm时,G液=G固,两相共存;当TTm时,G液G固,金属熔化成液体;当TG固,金属结晶成固体,而G=G固-G液0,为结晶的驱动力,由此可知过冷是结晶的必要条件,T越大,结晶驱动力越大,结晶速度越快。1.5 形核和长大一. 形核 液态金属在结晶时,其形核方式一般认为主要有两种:即均质形核(对称均匀形核)和异质形核(又称非均匀形核)。1. 均质形核均质形核是纯净的过冷液态金属依靠自身原子的规则排列形成晶核的过程。它形成的具体过程是液态金属过冷到某一温度时,其内部尺寸较大的近程有序原子集团达到某一临界尺寸后成为晶核。 由于过冷提供了结晶的驱动力,但晶核形成后会产生新的液固界面,使体系自由能升高,所以并不是一有过冷就能形核,而是要达到一定的过冷度后,才能形核。形核速度的快慢用形核率表示N,它是单位时间内单位体中形成的晶核数目,它与过冷度即结晶驱动力大小有关,还与原了活动能力(扩散稳迁移能力)有关,见图1.28。即N受两个相互制约的因素控制。T大,结晶驱动力大,但温度低,原子活动能力小,所以N-T完整的曲线,应是正态分布,但因金属结晶倾向很大,实际只能测到曲线的前半部,金属已经结晶完毕,见图1.29,由于均质形核阻力较大,当T=0.2Tm时才能有效形核。2. 异质形核异质形核是液态金属原子,依附于模壁或液相中未熔固相质点表面,优先形成晶核的过程。由实验发现异质形核所需的过冷度小,T=0.02Tm时,就能有效形核。见右图,因为异质形核是依附在现有固体表面形核(称为形核基底或衬底),所以新增的液固界面积小,界面能低,结晶阻力小。另外,实际液态金属中总是或多或小地存在着未熔固体杂质,而且在浇注时液态金属总是要与模壁接触,因此实际液态金属结晶时,首先以异质形核方式形核。但是应该注意的是,并不是任何固体表面都能促进异质形核。只有晶核与基底之间的界面能越小时,这样的基底才能促进异质形核。 由形核的讨论可知过冷是结晶的必要条件,但过冷后还需通过能量起伏和结构起伏,使近程有序的原子集团达到某一临界尺寸后才能形成晶核。二. 晶体的长大 晶核形成以后就会立刻长大,晶核长大的实质就是液态金属原子向晶核表面堆砌的过程,也是固液界面向液体中迁移的过程。它也需要过冷度,该过冷度称为动态过冷度用Tk表示,一般很小难以测定。 经研究发现晶体的生长方式主要与固液界面的微观结构有关,而晶体的生长形态主要与固液界面前沿的温度梯度有关。1. 固液界面的微观结构和晶体长大机制1) 固液界面的微观结构经研究发现固液界面的微观结构主要有两类。(1) 光滑界面:即液固界面是截然分开的,95%或5%的位置为固相原子占据。它由原子密排面组成,故也称为小平面界面见右图 或图1.30(a),(2) 粗糙界面:即液固界面不是截然分开的,50%的位置被固相原子占据,还有50%空着,故也称为非小平面界面。见右图或图1.30(b)。2) 晶体的长大机制(1) 粗糙界面的长大机制连续垂直长大机制即液相原子不断地向空着的结晶位置上堆砌,并且在堆砌过程中固液界面上的台阶始终不会消失,使界面垂直向液相中推进,故其长大速度快,金属及合金的长大机制多以这种方式进行,因为它们的固液界面多为粗糙面。(2) 光滑界面的长大机制侧向长大机制对于完全光滑的固液界面多以二维晶核机制长大。a. 二维晶核机制:由于固液界面是完全光滑的,则单个液相原子很难在其上堆砌(增加界面积大,界面能高),所以它先以均质形核方式形成一个二维晶核,堆砌到原固液界面上,为液相原子的堆砌提供台阶,而进行侧向长大。长满一层后,晶体生长中断,等新的二维晶核形成后再继续长大,因此它是不连续侧向生长,长大速度很慢,与实际情况相差较大,见图1.31(a)。对于有缺陷的光滑界面,多以晶体缺陷生长机制长大。b. 晶体缺陷生长机制:见图1.31(b)或下图,即在光滑界面上有露头的螺型位错,它的存在为液相原子的堆砌提供了台阶(靠背),液相原子可连续地堆砌,使固液界面进行螺旋状连续侧向生长,其长大速度较快,并与实际情况比较接近,非金属和金属化合物多为光滑界面,它们多以这种机制进行生长。2. 固液界面前沿的温度梯度与纯金属晶体的生长形态1) 固液界面前沿的温度梯度固液界面前沿的温度梯度主要有两种:即正温度梯度和负温度梯度。(1) 正温度梯度( ) 见P16页图1.32(a),由于液态金属在铸型中冷却时热量主要通过型壁散出,故结晶首先从型壁开始,液态金属的热量和结晶潜热都通过型壁和已结晶固相散出,因此固液界面前沿的温度随距离x的增加而升高,即T随x而。 (2) 负温度梯度 见图1.32(b.c),若金属在坩埚中加热熔化后,随坩埚一起降温冷却,当液态金属处于过冷状态时,其内部某些区域会首先结晶,这样放出的结晶潜热使固液界面温度升高,因此固液界面前沿的温度随距离x的增加而降低,即T随x而。2) 纯金属晶体的生长形态纯金属的固液界面从微观角度说是粗糙界面,它的生长形态主要受界面前沿的温度梯度影响。(1) 在正温度梯度时按平面状生长 见图1.33(a),由前面的介绍我们知道粗糙界面的生长机制为连续垂直生长,在正温度梯度时,界面上的凸起部分若想较快的朝前生长,就会进入T较小的区域,使其生长速度减慢,因此始终维持界面为平面状。 (2) 在负温度梯度时按树枝晶生长见图1.33、1.34,由于在负温度梯度时,固液界面前沿随xT,因此界面上的凸起部分能接解到T更大的区域而超前生长,长成一次晶轴,在一次晶轴侧面也会形成负温度梯度,而长出二次晶轴;二次晶轴上又会生长三次晶轴。就相先长出树杆再长出分枝一样,故称为枝晶生长。对于立方晶系各次晶轴间成垂直关系(沿104K/S)技术的发展,人们已能得到尺寸为0.11.0 数量的超细晶粒金属材料,其性能不仅强度、韧性高,而且具有超塑性,优异的耐蚀性,抗晶粒长大性、抗幅照性等。成为具有高性能的新型金属材料。4. 孕育(变质)处理对于厚壁铸件,用激冷的方法难以使其内部晶粒细化,并且冷速过快易使铸件变形开裂,但在液态金属浇注前向其中加入少量孕育剂或变质剂,可起到异质形核率或阻碍晶粒长大作用,从而使大型铸件从外到里均能得到细小的晶粒,但对不同的材料加入的孕育剂或变质剂不同,如碳钢加钒、钛(形成TiN、TiC、VN、VC促进异质形核);铸铁加硅铁硅钙(促进石墨细化);铝硅合金加钠盐(阻碍晶粒长大第二章二元合金的相结构与相图由于纯金属的机械性能比较低,很难满足机械制造业对材料性能的要求,尤其是一些特殊性能如高强度、耐热、耐蚀、导磁、低膨胀等的要求,加上它冶炼困难,价格昂贵,所以在工业生产中广泛使用的金属材料主要是合金。合金的性能比纯金属的优异,主要是因为合金的结构与组织与纯金属不同,而合金的组织是合金结晶后得到的,合金相图就是反映合金结晶过程的重要资料,也是制订各种热加工工艺的重要理论依据,所以本章着重介绍合金的结构与相图。2.1合金的相结构相指具有相同结构,相同成分和性能(也可以是连续变化的)并以界面相互分开的均匀组成部分,如液相、固相是两个不同的相,合金在室温时只有一个相组成的合金称为单相合金,由两个相组成的合金称为两相合金。由多个相组成的合金称为多相合金。组织指用肉眼或显微镜观察到的材料内部形貌图像,一般用肉眼观察到的称为宏观组织,用显微镜放大后观察到的组织称为微观组织。材料的组织是由相组成的,当组成相的数量、大小、形态和分布不同时,其组织也就不同。从而导致其性能不同,因此可以通过改变合金的组织来改变合金的性能。合金系由给定的若干组元按不同的比例配制成的一系列不同成分的合金,为一个合金系统,简称为合金系。如由A、B两个组元配制成的称为A-B二元系,同样由三个组元或多个组元配制成的称为三元系合金或多元系合金,本章主要介绍二元系合金的有关知识。由于组成合金的各组元的结构和性质不同,因此它们在组成合金时,它们之间的相互作用也就不同,所以它们之间可以形成许多不同的相。但按这些相的结构特点,可以将它们分为两大类:即固溶体和金属间化合物。固溶体的主要特点是:其晶体结构与溶剂组元的相同;而金属间化合物的主要特点是其晶体结构与两组元的结构均不相同,而是一种新的晶体结构。一. 固溶体1. 固溶体由两种或两种以上组元在固态下相互溶解,而形成得具有溶剂晶格结构的单一的、均匀的物质。1) 溶剂:固溶体中含量较多的并保留原有晶格结构的组元称为溶剂。3) 溶质:固溶体中含量较少的并失去原有晶格结构的组元称为溶质。2. 固溶体的分类 固溶体的分类方法很多,下面简单介绍几种:1) 按溶质原子占据的位置不同分:(1) 置换固溶体:溶质原子占据溶剂晶格中某些结点位置而形成的固溶体。见P20页图2.1(为平面图是某一晶面上的情况),它主要在金属元素之间形成。(2) 间隙固溶体:是溶质原子占据溶剂晶格间隙而形成的固溶体,见图2.2,它主是由原子半径很小(0.1nm)的非金属元素氢、氧、氮、碳、硼与金属元素之间形成。2) 按溶质原子的溶解度分(1) 有限固溶体有限固溶体是溶质原子在溶剂晶格中的溶解量具有一定的限度,超过该限度,它们将形成其它相。如间隙固溶体只能是有限固溶体,因为晶格间隙是有限的。如碳在面心立方的中的最大固溶度为2.11%(质量),而在体心立方中最大只能溶解0.0218%,但体心立方晶格的致密度比面心立方的低,理应具有较高的溶解度,上例说明间隙固溶体的溶解度,与溶剂的晶格类型有关,不同的晶格类型其间隙的大小和类型也不相同,另外一般发现随温度的升高,固溶体的溶解度增大,随温度的降低固溶体的溶解度减小。这样在高温时具有较大溶解度的固溶体到低温时会从中析出新相(多余的溶质与部分溶剂所形成)。(2) 无限固溶体溶质能以任意比例溶入溶剂所形成的固溶体,其溶解度可达100%,见图2.3,即两组元可连续无限置换。 但并不是所有的置换固溶体都能形成无限固溶体,只有当两组元具有相同的晶格类型,并且原子尺寸相差不大,负电性相近(在元素周期表中比较靠近)时,才可能形成无限固溶体。即使形成有限固溶体,它们之间的溶解度也较大。3) 按溶质原子在晶格中的分布状态分(1) 无序固溶体:溶质原子占据溶剂晶格结点的位置是随机的,任意的和不固定的。加热缓冷(2) 有序固溶体:溶质原子只占据溶剂晶格结点的某几个固定位置,这样的固溶体也称为超结构或超点阵。(3) 有序化转变:有序固溶体 无序固溶体,在一恒温下转变,该临界温度称为有序化转变温度。一般当溶质与溶剂原子数成一定比例时,形成的固溶体在缓慢冷却时,易发生有序化转变。如铜金合金,当原子比为1:150%Cu,50%Au,在385)或3:1(75%Cu,25%Au,在390)时在缓冷到一定温度时由无序转化为有序。固溶体由无序转变为有序,将使合金的性能发生明显的变化,如硬度,脆性,塑性,电阻等。3. 固溶体的性能1) 机械性能:产生固溶强化固溶强化:随溶质原子浓度强化的增加,固溶体强度、硬度升高,而塑性、韧性稍有降低的现象,见P21页图2.5,固溶强化是金属材料的重要途径之一,它在生产中得到广泛应用,几乎生产中使用的绝大部分合金材料都是以固溶体作为主体相(基体相)。产生固溶强化的原因见图2-4,因为溶质原子与溶剂原子的尺寸大小不同,当它溶入溶剂形成固溶体时会造成晶格畸变,一般大的溶质原子使点阵常数增大,产生正畸变;而小的溶质原子使点阵常数减小,产生负畸变;间隙溶质原子总是使点阵常数增大,产生正畸变(其原子尺寸大于晶格间隙尺寸),晶格畸变对位错运动有阻碍作用,故使固溶体的硬度、强度,塑性、韧性,一般间隙溶质原子的强化效果大于置换溶质原子的强化效果。2) 物理性能:随溶质原子含量的增加,固溶体合金的电阻温度系数减小,导电性,电阻。见图2.5。二. 金属间化合物 两组元在组成合金时,当它们的溶解度超过固溶体的极限溶解度后,将形成新的合金相,这种新相一般称为化合物。化合物通常可以分为金属间化合物和非金属化合物。1. 金属间化合物:是指两组元(金属之间、金属与类金属Pb、Sn、Bi、Sb等或少数非金属)在一定成分范围内,形成的不同于原两组元晶体结构,并具有金属特性的物质。2. 非金属化合物:是指金属与非金属,非金属与非金属之间,形成的不同于原两组元晶体结构的,没有金属特性的物质,如FeS,MnS,NaCl等,它们在金属材料中的数量很少,以杂质形式存在通常称为非金属夹杂物,但它们的存在对金属材料性能的影响却很坏。这在后面章节将介绍,下面我们着重介绍金属间化合物。3. 金属间化合物的一般特点金属间化合物是在固溶体达到极限溶解度后形成的,它一般处在合金相图的中间部位,故又称为中间相。它的特点是结合键具有多样性,晶体结构与两组元不同,并且有多样性,高的熔点、硬度和脆性,当在合金中分布合理时,可起强化相作用,能提高金属材料的强度、硬度、耐磨性和耐热性;但当它在金属中的数量过多时,会使合金的塑性、韧性大大降低,所以它不能单独作为结构材料使用。4. 金属间化合物的分类 金属间化合物的类型很多,但是根据它们的形成条件不同,可将它们大致分为三类,正常价化合物、电子化合物、间隙相和间隙化合物。1) 正常价化合物(1) 正常价化合物:是指由金属与IVA VA VIA族元素形成的符合化合价规律,具有固定成分,可用化学分子式表示的化合物,一般为AB、A2B、A3B2三种类型,如PtSn、ZnS、Mg2Si、Mg2Sn、Mg2Pb、Mg3Sb2等。 (2) 正常价化合物的特点 主要受负电性因素控制,两组元负电性相差越大,越易形成这类化合物,并且形成的化合物的结构键性质及稳定性随负电性差的减小而变化,如下表所示: 化合物Mg2SiMg2SnMg2Pb结合键性质离子键共价键金属键熔点1102778550(稳定性)高 低其晶体结构不同与两组元,具有高的硬度和脆性,当在金属材料中弥散细小分布时,可起强化相作用,但在常用金属材料中一般很少形成这类化合物。2) 电子化合物(1) 电子化合物:是指过渡族和IB元素与IIB和IIIA至VA元素,形成的具有一定电子浓度,一定晶体结构和一定成分范围,并具有明显金属特性的化合物,如CuZn、FeAl、Cu5Zn8、CuZn3、Cu3Sn、Cu9Al4等。(2) 电子化合物的分类电子化合物根据其电子浓度(C电子=价电子数与原子数之比)的不同可分为三类: Cu=1价 C电子= C电子= C电子=Zn=2价体心立方结构 复杂立方结构 密排六方结构 相 相 相CuZnC电子=, Cu5Zn8 C电子=, CuZn3 C电子= (3) 电子化合物的特点主要受电子浓度因素控制,不遵守化合价规律,晶体结构与两组元不同,但取决于电子浓度,具有高的熔点和硬度,但塑性较低,多产生于有色金属中,与固溶体配合适当可起到强化作用。三. 间隙相和间隙化合物 间隙相和间隙化合物一般是在间隙固溶体中间隙溶质原子,含量超过其极限溶解度后所形成的金属间化合物。它主要可分为具有简单结构的间隙相和具有复杂结构的间隙化合物。1. 间隙相1) 间隙相是指非金属原子过渡族金属原子半径比小于0.59()时,形成的具有简单结构的金属化合物,如VC、TiC、WC等。2) 间隙相的特点 主要受原子尺寸因素控制,晶体结构简单见P22页图2.6(a),但与原两组元不同,一般金属原子占据晶格结点位置构成面心立方、体心立方、密排六方,简单六方结构,非金属原子有规则地占据晶格间隙。其化学成分可用简单分子式M4X、M2X、MX、MX2表示(金属与非金属原子成一定比例),但成分可在一定的范围内变化(以间隙相为基,形成缺位固溶体而造成,它具有极高的熔点和硬度,但脆性较大,稳定性高,不易溶解和分解),当其量和分布合理时,可有效提高金属材料的热强性、红硬性和耐磨性等,是高合金钢和硬质合金的重要组成相。2. 间隙化合物1) 间隙化合物:是非金属原子与过渡族金属原子半径比大于0.59()时,形成的具有复杂结构的金属化合物。金属与碳形成的间隙化合物有M3C、M7C3、M6C、M23C6型等,如Fe3C、Cr23C6、Cr7C3、Fe4W2C等。 2) 间隙化合物的特点主要受原子尺寸因素控制,晶体结构复杂见图2.6(b),但与原两组元不同,具有一定的成分范围(可看作以间隙化合物为基的固溶体),具有高的熔点和硬度。是合金钢中的主要强化相,但其熔点、硬度和稳定性比间隙相小,见表2.1,比较容易溶解和分解。如Ee3C渗碳体可形成(Fe、Cr)3C、(Fe、Mn)3C、Fe3(C、N)、Fe3(C、B)合金渗碳体;(Cr、Fe)23C6、(Cr、Fe、Mo、W)23(C、B)6等。以上我们讨论了合金的相结构,知道它主要有固溶体和金属间化合物两大类相结构,但在工业上实际使用的合金,主要是由固溶体与固溶体或固溶体与金属间化合物组成的机械混合物。该混合物的性能主要取决于组成它的合金相本身的性能,以及它们的形状、大小、数量和分布情况。要了解这些问题就必须搞清楚合金的结晶过程,而合金相图就是反映合金结晶过程的重要资料。2.2 二元合金相图的建立一. 二元相图表示方法1. 相图相图是表示合金系中各合金在平衡状态(在极缓慢冷却条件下,各相成分和相质量比不再随时间变化)下,在不同温度时,合金具有的状态和组成相关系的图解,所以也称它为合金状态图或平衡图。我们知道纯金属的结晶过程,可以用热分析法通过测定它的冷却曲线来研究。它的结晶过程只需用一个坐标轴就能反映,如纯铜的冷却曲线如右图:对于二元合金的结晶过程,同样也可以用热分析法,通过测定它的冷却曲线来研究。所不同的是二元合金由两个组元组成,它的成分是可以变化的,所以它必须用两个坐标轴表示(合金结晶是在常压下进行,没有压力变化),见P22页图2.7。纵坐标表示温度,横坐标表示成分(浓度),由A、B两组元组成的合金系,A点表示合金含100%A、0%B,由纯A组元构成;B点表示合金含100%B,0%A,由纯B组元构成。2. 表象点相图中能表示合金成分、温度的任何点都称为表象点,如图2.7中,C点表示合金含70%A、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 桥梁远景图文体课件
- 《机械员》考试题库含完整答案【网校专用】
- 常见病症用药测试题库含答案
- 2025年物流行业招聘面试实战指南与预测题解答
- 2025年电子商务运营师中级面试必-备题库
- 2025广东政府采购评标专家考试题库及答案
- 2025年注册验船师资格考试(A级船舶检验专业法律法规)练习题及答案一
- 2025年高级电子商务运营师认证考试题库及参考答案
- 2025年餐饮连锁店长招聘面试预测题及应对策略
- 桥梁博士v4培训课件
- ESD防静电知识培训
- SJG 71-2020 桥梁工程设计标准
- 加入音乐家协会申请书
- 2025年高二开学第一课主题班会:扬帆砥砺行奋斗正当时
- 绿化养护手册
- 华住收益管理
- 阿里云培训课件
- 《隧道抗震韧性评价标准》标准文本附编制说明
- 智联招聘行测题库及答案
- 2024版技术咨询合同:化工行业技术服务协议3篇
- 电梯使用单位培训
评论
0/150
提交评论