


免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考数学专题复习练习二次函数无答案一选择题(共8小题)1矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1)一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()Ay=x2+8x+14By=x28x+14Cy=x2+4x+3Dy=x24x+32抛物线y=ax2+bx+3(a0)过A(4,4),B(2,m)两点,点B到抛物线对称轴的距离记为d,满足0d1,则实数m的取值范围是()Am2或m3Bm3或m4C2m3D3m43若+|n2|=0,且二次函数y=ax2+mx+n与x轴有交点,则a的取值范围是()Aa8且a0Ba8Ca8且a0Da84函数y=x23x+4的图象与坐标轴的交点个数是()A0个B1个C2个D3个5在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()ABCD6如图,直线y=kx+c与抛物线y=ax2+bx+c的图象都经过y轴上的D点,抛物线与x轴交于A、B两点,其对称轴为直线x=1,且OA=OD直线y=kx+c与x轴交于点C(点C在点B的右侧)则下列命题中正确命题的个数是()abc0;3a+b0;1k0;ka+b;ac+k0A1B2C3D47如图,抛物线m:y=ax2+b(a0,b0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C将抛物线m绕点B旋转180,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1若四边形AC1A1C为矩形,则a,b应满足的关系式为()Aab=2Bab=3Cab=4Dab=58若正实数a、b满足ab=a+b+3,则a2+b2的最小值为()A7B0C9D18二填空题(共10小题)9当m= 时,函数是二次函数10已知M、N两点关于y轴对称,且点M在双曲线上,点N在直线y=x+3上,设点M坐标为(a,b),则y=abx2+(a+b)x的顶点坐标为 11当1x2时,二次函数y=x2+2kx+1的最小值是1,则k的值可能是 12若二次函数y=ax2+5x5与x轴有交点,则a的取值范围是 13如果函数y=b的图象与函数y=x23|x1|4x3的图象恰有三个交点,则b的可能值是 14如图是二次函数y=ax2+bx+c(a0)图象的一部分,x=1是对称轴,有下列判断:b2a=0;4a2b+c0;ab+c=9a;若(3,y1),(,y2)是抛物线上两点,则y1y2,其中正确的序号是 15把y=2x26x+4配方成y=a(xh)2+k的形式是 16已知二次函数y=ax2+bx+c的图象如图所示,对称轴x=1,下列结论中正确的是 (写出所有正确结论的序号)b0;abc0;b24ac0;ab+c0;4a+2b+c0;方程ax2+bx+=0有一根介于3和4之间17二次函数y=ax2+bx+c的图象如图所示,那么abc,b24ac,2a+b,a+b+c四个代数式中,值为正数的有 个18已知抛物线y=ax2+bx+c经过点(1,2)与(1,4),则a+c的值是 三解答题(共5小题)19如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(1,0)、(0,3)(1)求抛物线的函数解析式;(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;(3)在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与DOC相似,请你直接写出所有满足条件的点P的坐标20已知抛物线y=x2+bx+c与直线y=4x+m相交于第一象限不同的两点,A(5,n),B(e,f)(1)若点B的坐标为(3,9),求此抛物线的解析式;(2)将此抛物线平移,设平移后的抛物线为y=x2+px+q,过点A与点(1,2),且mq=25,在平移过程中,若抛物线y=x2+bx+c向下平移了S(S0)个单位长度,求S的取值范围21如图1,对称轴为直线x=的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使MQC为等腰三角形且MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由22设抛物线的解析式为y=ax2,过点B1(1,0)作x轴的垂线,交抛物线于点A1(1,2);过点B2(,0)作x轴的垂线,交抛物线于点A2;过点Bn()n1,0)(n为正整数)作x轴的垂线,交抛物线于点An,连接AnBn+1,得RtAnBnBn+1(1)求a的值;(2)直接写出线段AnBn,BnBn+1的长(用含n的式子表示);(3)在系列RtAnBnBn+1中,探究下列问题:当n为何值时,RtAnBnBn+1是等腰直角三角形?设1kmn(k,m均为正整数),问:是否存在RtAkBkBk+1与RtAmBmBm+1相似?若存在,求出其相似比;若不存在,说明理由23如图,抛物线y=ax2+bx+c(a、b、c为常数,a0)经过点A(1,0),B(5,6),C(6,0)(1)求抛物线的解析式;(2)如图,在直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- LS客车公司员工培训体系优化研究
- 可爱的金鱼作文450字(12篇)
- 我家的宝贝写一只可爱的小狗6篇
- 2025至2030贝尼地平行业产业运行态势及投资规划深度研究报告
- 中小学心理健康教育研究心得
- 读中国梦有感150字9篇
- 颅内出血的急救
- 2025至2030中国有机苏籽油行业市场发展现状及发展趋势与投资策略报告
- 2025至2030中国无线病人监护设备行业发展趋势分析与未来投资战略咨询研究报告
- 2025至2030中国方便塑料袋行业市场现状分析及竞争格局与投资发展报告
- 2025年湖南金叶烟草薄片有限责任公司招聘笔试参考题库含答案解析
- 赤峰市水体达标方案 (2019-2020年)
- I-MR(单值-移动极差)控制图
- 《邹忌讽齐王纳谏》比较阅读82篇(历年中考语文文言文阅读试题汇编)(含答案与翻译)(截至2024年)
- 政府应急管理与协调机制
- 转让幼儿园经营权协议书
- 2024全国初中数学竞赛试题及答案
- 除甲醛施工方案
- 三、油气回收设备组成
- 空调服务技术保障及人员培训方案
- 医院导医服务礼仪
评论
0/150
提交评论