函数恒成立问题的答案.doc_第1页
函数恒成立问题的答案.doc_第2页
函数恒成立问题的答案.doc_第3页
函数恒成立问题的答案.doc_第4页
函数恒成立问题的答案.doc_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

函数恒成立的问题类型1:利用一次函数的单调性对于一次函数有:例1 若不等式对满足的所有都成立,求x的范围。解:原不等式化为 (x21)m(2x1)0 记f(m)= (x21)m(2x1) (2m2) 根据题意有: 即:解之:得x的取值范围为类型2:利用一元二次函数的判别式设, 上恒成立 ; 上恒成立 。例2: 在R上定义运算:xy(1y) 若不等式(xa)(xa)1对任意实数x成立,则 ( )(A)1a1 (B)0a2 (C) (D) 解:由题意可知 (x-a)1-(x+a) 0对xR恒成立记f(x)=x2-x-a2+a+1则应满足(-1)2-4(-a2+a+1)0化简得 4a2-4a-30对满足0x1的所有实数x都成立,求m的取值范围。解:设f(x)=x2-2mx+2m+1本题等价于函数f(x)在0x1上的最小值大于0,求m的取值范围。(1)当m0时,f(x)在0,1上是增函数,因此f(0)是最小值,解 得 m1时,f(x)在0,1 上是减函数,因此f(1)是最小值解 得 m1综合(1)(2)(3) 得 例4若不等式的解集是R,求m的范围。解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m,所以要讨论m-1是否是0。(1)当m-1=0时,元不等式化为20恒成立,满足题意;(2)时,只需,所以,。注:当化归为二次函数后,自变量是实数集的子集时,应用二次函数知识解决有时较繁琐。此型题目有时也可转化为后面的法3求解。类型3:利用函数的最值(或值域) 。简单记作:“大的大于最大的,小的小于最小的”。由此看出,本类问题实质上是一类求函数的最值问题。例5在ABC中,已知恒成立,求实数的范围。解析由,恒成立,即恒成立,例4:求使不等式恒成立的实数a的范围。解析:(1)由于函,显然函数有最大值,。如果把上题稍微改一点,那么答案又如何呢?请看下题:(2)求使不等式恒成立的实数a的范围。解析:我们首先要认真对比上面两个例题的区别,主要在于自变量的取值范围的变化,这样使得的最大值取不到,即a取也满足条件,所以。 所以,我们对这类题要注意看看函数能否取得最值,因为这直接关系到最后所求参数的取值。利用这种方法时,一般要求把参数单独放在一侧,所以也叫分离参数法。类型4:数形结合法: 对一些不能把数放在一侧的,可以利用对应函数的图象法求解 例5.已知,求实数a的取值范围。解析:由,在同一直角坐标系中做出两个函数的图象,如果两个函数分别在x=-1和x=1处相交,则由得到a分别等于2和0.5,并作出函数的图象,所以,要想使函数在区间中恒成立,只须在区间对应的图象在在区间对应图象的上面即可。当才能保证,而才可以,所以。例6.若当P为圆上任意一点时,不等式恒成立,则的取值范围是( )A. B. C. D.解析:由,可以看作是点P(m,n)在直线的右侧,而点P(m,n)在圆上,实质相当于是在直线的右侧并与它相离或相切。,故选D。例7:如果对任意实数x,不等式恒成立,则实数k的取值范围是解析:画出y1=,y2=kx的图像,由图可看出 0k1例8:已知a0且a1,当x(-1,1)时,不等式x2-ax恒成立,则a的取值范围解析:不等式x2-ax x2-画出y1= ax,y2= x2-的图像。由图可看出 a1或1f(x) (afmax(x) (aan-1恒成立,求a0的取值范围。解:依题意:3n+(-1)n-12n+(-1)n2na03n-1+(-1)n-22n-1+(-1)n-12n-1a0化简,得 (-1)n32n-1a0-3n-1+(-1)n2n-1 (1)当n=2k-1 kN*时 a0()n-1+ 设g1(n)= ()n-1+ g1(n)在nN* 时且n=2k-1,kN*时是增函数 g1(n)的最小值为g1(1) a0-()n-1+ 设g2(n)=- ()n-1+ g2(n)在nN*且n=2k,kN*时是减函数 g2(n)的最大值为g2(2)0 a00综上可知0a00。设x0(0, ),y=kx+m是曲线y=f(x)在点(x0,f(x0)处的切线方程并设函数g(x)=kx+m()用x0,f(x0),(x0)表示m;()证明:当x(0, )时,g(x)f(x)()若关于x的不等式x2+1ax+b在0, )上恒成立,其中a、b为实数。求b的取值范围及a与b所满足的关系。 本题()应用了此方法。()解:0b1,a0是不等式成立的必要条件。以下讨论设此条件成立。 x2+1ax+b 即x2-ax+(1-b)0对任意x0, )成立的充要条件是a令(x)=ax+b-,于是ax+b对任意x0, )成立的充要条件是(x)0由(x)=a-=0得x= 当0x时,(x) 时,(x) 0,所以,当x时,(x)取最小值。因此,(x)0成立的充要条件是()0。即a 综上,不等式x2+1ax+b对任意x0, 成立的充要条件是 a显然,存在a、b使式成立的充要条件是:不等式有解。解不等式得 因此,式即为b的取值范围,式即为实数a与b所满足的关系。例12:当x(1,2)时,不等式(x-1)2logax恒成立,求a的取值范围。xyo12y1=(x-1)2y2=logax分析:若将不等号两边分别设成两个函数,则左边为二次函数,图象是抛物线,右边为常见的对数函数的图象,故可以通过图象求解。解:设y1=(x-1)2,y2=logax,则y1的图象为右图所示的抛物线,要使对一切x(1,2),y11,并且必须也只需当x=2时y2的函数值大于等于y1的函数值。故loga21,a1,10,注意到若将等号两边看成是二次函数y= x2+20x及一次函数y=8x-6a-3,则只需考虑这两个函数的图象在x轴上方恒有唯一交点即可。xyl1l2l-20o解:令y1= x2+20x=(x+10)2-100,y2=8x-6a-3,则如图所示,y1的图象为一个定抛物线,y2的图象是一条斜率为定值8,而截

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论