二次根式复习(2013中考复习).doc_第1页
二次根式复习(2013中考复习).doc_第2页
二次根式复习(2013中考复习).doc_第3页
二次根式复习(2013中考复习).doc_第4页
二次根式复习(2013中考复习).doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第21章 二次根式知识点复习(2013中考复习)【知识点1】二次根式的概念:一般地,我们把形如的式子叫做二次根式。二次根式的实质是一个非负数数a的算数平方根。【注】二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a必须是非负数。例1 下列各式(其中是二次根式的是_(填序号)例2 使有意义的x的取值范围是()Ax0 Bx2 Cx2 Dx0且x2来源:学*科*网Z*X*X*K例3 若y=+2009,则x+y= 练习1使代数式有意义的x的取值范围是 练习2若,则xy的值为 例4 若,则 = 。例5 在实数的范围内分解因式:X4 - 4X2 + 4= _ 例6 若a、b为正实数,下列等式中一定成立的是( ): A、+=; B、=a2+b2; C、(+)2= a2+b2; D、=ab;【知识点2】二次根式的性质:(1)二次根式的非负性,的最小值是0;也就是说()是一个非负数,即。注:因为二次根式表示a的算术平方根,这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。(2)() 文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。注:二次根式的性质公式()是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若,则,如: (3)例7 a、b、c为三角形的三条边,则_.例8 把(2-x)的根号外的(2-x)适当变形后移入根号内,得 例9 若二次根式有意义,化简x-4-7-x= 。例10 已知x、y是实数,且满足y=+1试求9x2y的值例11 若实数a满足+a=0,则有 例12 下列命题中,正确的是()A若ab,则 B若a,则a0C若|a|=()2,则a=b D若a2=b,则a是b的平方根例13 是整数,则正整数的最小值是( )A、4; B、5; C、6; D、7例14 实数、在数轴上的位置如图所示,那么的结果是什么?例15 已知已知,则 练习1. 若,则10x2y的平方根为_练习2 若试求的值。练习3 若,求的值专题二 二次根式的乘除【知识点1】二次根式的乘法法则:。将上面的公式逆向运用可得: 积的算术平方根,等于积中各因式的算术平方根的积。例1 化简(1)_(2)_例2 下列各式中不成立的是()例3 计算 例4若b0,x0)、1、1-、(x0,y0)是二次根式的是 ,不是二次根式的是 。(二)最简二次根式 1把二次根式(y0)化为最简二次根式结果是( ) A(y0) B(y0) C(y0) D以上都不对2化简=_(x0) 3a化简二次根式号后的结果是_4. 已知0,化简二次根式的正确结果为_(三)同类二次根式1以下二次根式:;中,与是同类二次根式的是( ) A和 B和 C和 D和2在、3、-2中,与是同类二次根式的有_3若最简根式与根式是同类二次根式,则a= ,b= 。4.若最简二次根式与是同类二次根式,则m= ,n= 。(四) “分母有理化”与“有理化因式”1.+的有理化因式是_; x-的有理化因式是_ -的有理化因式是_2.把下列各式的分母有理化(1); (2); (3); (4)2、 二次根式有意义的条件: 3、 1(1)当x 时,在实数范围内有意义。(2)当x 时, +在实数范围内有意义。(3)当x 时,+x2在实数范围内有意义。(4)当 时,有意义。2. 使式子有意义的未知数x有( )个 A0 B1 C2 D无数3已知y=+5,则= 。4若+有意义,则=_5. 若有意义,则的取值范围是 。6要是下列式子有意义求字母的取值范围 (1) (2) (3)三、二次根式的非负数性1若+=0,求a2004+b2004= 。2已知+=0,求xy= 。3.若,求= 。a0a0四、 的应用1先化简再求值:当a=9时,求a+的值,甲乙两人的解答如下:甲的解答为:原式=a+=a+(1-a)=1;乙的解答为:原式=a+=a+(a-1)=2a-1=17两种解答中,_的解答是错误的,错误的原因是_2. 若-3x2时,试化简x-2+。3化简a的结果是( ) A B C- D-4把(a-1)中根号外的(a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论